ba đường cao của 1 tam giác có độ dài lần lượt là 4;12;x. Biết rằng x là 1 số tự nhiên. Tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ha=9; hb=12; hc=16
=>hc*9=ha*16=hb*12
=>hc/16=ha/9=hb/12
=>Haitam giác này đồng dạng
b: ha=4; hb=5; hc=6
=>ha*6=24; hb*5=25; ha*4=24
=>Hai tam giác này ko đồng dạng
( 12 + 4 ) : 2 = 8 cm
Đúng 100% tớ làm rồi , tích tớ nhé Nguyễn Văn Duy
hình như dựa vào tính chất dãy tỉ số bằng nhau ak pn. mk cx chỉ nhớ z thui chứ hk chắc cko lém :)
Ba đường cao của một tam giác có độ dài lần lượt là 4; 12;x . Biết rằng x là một số tự nhiên . Tìm x
Gọi độ dài ba cạnh (ba đáy của các đường cao tương ứng) lần lượt là a,b,c
Cùng 1 tam giác, đường cao và đáy là các đại lượng tỉ lệ nghịch nên :
\(\frac{4a}{2}=\frac{12b}{2}=\frac{xc}{2}=S\)(S là diện tích tam giác ABC)
\(\Rightarrow2a=6b=\frac{x}{2}.c=S\)
\(\Rightarrow\hept{\begin{cases}a=\frac{S}{2}\\b=\frac{S}{6}\\c=\frac{2S}{x}\end{cases}}\)
Theo bất đẳng thức tam giác ,ta có:
\(a-b< c< a+b\)
\(\Rightarrow\frac{S}{2}-\frac{S}{6}< \frac{2S}{x}< \frac{S}{2}+\frac{S}{6}\)
\(\Rightarrow\frac{S}{3}< \frac{2S}{x}< \frac{2S}{3}\)
\(\Rightarrow\frac{2S}{6}< \frac{2S}{x}< \frac{2S}{3}\)
\(\Rightarrow3< x< 6\)
Mà x là số tự nhiên nên x = 4 hoặc x = 5