K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: vecto AC+vecto BD

=vecto AI+vecto IC+vecto BI+vecto ID

=vecto ID+vecto IC

=2*vecto IJ

vecto AD+vecto BC

=vecto AI+vecto ID+vecto BI+vecto IC

=vecto IC+vecto ID

=2*vecto IJ

=vecto AC+vecto BD

b: vecto GA+vecto GB+vecto GC+vecto GD

=2*vecto GI+2*vecto GJ

=2(vecto GI+vecto GJ)

=vecto 0

16 tháng 1 2023

hi

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

a) △ABC có M và N là trung điểm của AB, BC nên MN // AC (1)

△ACD có P và Q là trung điểm của CD, DA nên PQ // AC (2)

△SMN có I và J là trung điểm của SM, SN nên IJ // MN (3)

△SPQ có L và K là trung điểm của SQ, SP nên LK // PQ (4)

Từ (1)(2)(3)(4) suy ra IJ // LK. Do đó: I, J, K, L đồng phẳng. 

Ta có:  \(\dfrac{MN}{AC}=\dfrac{QP}{AC}=\dfrac{1}{2}\)

\(\dfrac{IJ}{MN}=\dfrac{LK}{PQ}=\dfrac{1}{2}\)

Từ (6)(7) suy ra: IJ = LK mà IJ // LK 

Do đó: IJKL là hình bình hành. 

b) Ta có: M, P lần lượt là trung điểm của AB, CD

Suy ra: MP // BC (1)

△SMP có: I, K là trung điểm của SM, SP 

Suy ra: IK // MP (2)

Từ (1)(2) suy ra: IK // BC.

c) Ta có: J là điểm chung của hai mặt phẳng (IJKL) và (SBC) 

Mà: IK // BC 

Từ J kẻ Jx sao cho Jx // BC. Do đó, Jx là giao tuyến của hai mặt phẳng (IJKL) và (SBC). 

a: Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

P là trung điểm của CD

N là trung điểm của BC

Do đó: PN là đường trung bình của ΔABD

Suy ra: PN//BD và \(PN=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra MQ//PN và MQ=PN

hay MNPQ là hình bình hành

30 tháng 3 2019

*Xét  tam giác ABC có M; N  là trung điểm của AB, BC nên MN là đường trung bình của tam giác.

⇒ M N / / A C ;     M N = 1 2 A C   ( 1 )

* Xét  tam giác ADC có P; Q  là trung điểm của CD, DA nên PQ là đường trung bình của tam giác.

⇒ P Q / / A C ;     P Q = 1 2 A C   ( 2 )

* Từ (1) (2)  suy  ra  PQ// MN;  PQ = MN.  Do đó, tứ giác MNPQ là hình bình hành.

* Mà O là giao điểm của hình bình hành MNPQ nên O là trung điểm MP

* Xét tam giác ABC có MI là đường trung bình nên:  M I / / B C ;    M I = 1 2 ​ B C   ( 3 )

* Xét tam giác BCD có PJ là đường trung bình của các tam giác nên:  P J / / B C ;    P J = 1 2 ​ B C   ( 4 )

Từ (3) ( 4) suy ra ;  tứ giác  MIPJ là hình bình hành. Mà O là trung điểm MP nên  điểm O là trung điểm của đoạn thẳng IJ. Từ đó ta có  O I →   =   - O J →

Đáp án D

19 tháng 11 2015

Ta co:IA =IB(gt) ; HA =HC(gt)

Suy ra:HI la` đg tb của tam giac ABC

Suy ra:IH =1/2BC ;IH//BC (1)

Trong tam giac BDC co:KD =KB(gt) ;JD =JC(gt)

Suy ra :KJ la đg tb cu`a tam giac BDC

Suy ra :KJ =1/2BC ;KJ//BC (2)

Tu (1) va (2) suy ra :KJ = IH ;KJ // IH

Suy ra :tu giac KIHJ la hinh binh hanh(2 canh doi song song va bang nhau)(*)

Trong tam giac ADC co:HA =HC(gt) ;JD = JC(gt)

Suy ra :HJ la đg tb của tam giac ADC

Suy ra :HJ = 1/2AD

Mà AD =BC(gt) ; HI = 1/2BC(c/m tren)

Suy ra :HJ = HI (**)

Tu (*) va (**) suy ra tu giac KIHJ la hinh thoi (hbh co 2 canh ke bang nhau)

Suy ra :IJ  vuong goc voi KH . . . . A B C D K H I J

14 tháng 3 2019

Đáp án A

14 tháng 11 2019

Đáp án D

13 tháng 10 2017