K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2019

a) bc = 8cm ( dùng pytago )

a, tam giác ABC vuông tại B có:

        \(BA^2+BC^2=AC^2\)(đ/lí py ta-go)

hay 152+ BC2=172

=>    BC2=172-152

=> BC2= 289-225

=> BC2=6

=> BC=\(\sqrt{64}=8\)(cm)

b, Xét \(\Delta BAM\)và \(\Delta CNM\)có:

  MC=MA(gt)

  \(\widehat{M_1}=\widehat{M_2}\)(đối đỉnh)

MB=MC(M là trung điểm BC)

\(\Rightarrow\Delta MBA=\Delta MCN\left(c.g.c\right)\)

\(\Rightarrow\widehat{C_1}=\widehat{B}=90^0\)(2 góc t/ư)

=> \(CN\perp CB\)(đpcm)

24 tháng 2 2020

Câu hỏi của kakemuiki - Toán lớp 7 - Học toán với OnlineMath

24 tháng 2 2020

Câu hỏi của kakemuiki - Toán lớp 7 - Học toán với OnlineMath

24 tháng 2 2020

A B C O M' M N N'

a) +) Xét \(\Delta\)AM'B và \(\Delta\)BNA  có;

^M'AB = ^NBA = 90o 

AB chung

AM' = BN  ( = AC)

=> \(\Delta\)AM'B = \(\Delta\)BNA  

=> AN = BM'

+) Vì AM' = ABN ; AM = BN' ( = BC )

=> AM = BN'

^MAB = ^N'BA = 90o 

=> \(\Delta\)AMB = \(\Delta\)BN'A 

=> AN' = BM 

+) Xét \(\Delta\)AMC và \(\Delta\)BCN có:
AM = BC 

BN = AC 

^MAC = ^CBN ( = 90o )

=> \(\Delta\)AMC = \(\Delta\)BCN 

=> MC = NC 

b)  \(\Delta\)AM'B = \(\Delta\)BNA   ( chứng minh ở a)

=> ^M'BA = ^NAB mà  hai góc này ở vị trí so le trong 

=> AN // BM'

\(\Delta\)AMB = \(\Delta\)BN'A 

=> ^MBA = ^N'AB mà hai góc này ở vị trí so le trong 

=> MB // AN'

c) Gọi O là trung điểm của AB 

Xét \(\Delta\)OAM và \(\Delta\)OBN' có:

OA = OB 

^OAM = ^OBN' 

AM  = BN' 

=> \(\Delta\)OAM = \(\Delta\)OBN'  => ^AOM = ^BON'  mà ^AOM + ^MOB = 180o => ^BON' + ^MOB = 180o => MON' = 180o 

=> M; O; N' thẳng hàng (1)

Tương tự chứng minh được:

\(\Delta\)OAM' = \(\Delta\)OBN 

=> M'; O; N thẳng hàng (2)

Từ (1); (2) => MN' và M'N cắt nhau tại điểm O là trung điểm của AB

4 tháng 3 2021

Làm sao Nguyễn Linh Chi vẽ được hình như vậy chia sẻ liên kết cho mk vs ạ!