Cho P = ax2+bx+c / a'x2+b'x+c'
Chứng minh nếu a/a'=b/b'=c/c' thì P không phụ thuộc vào x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta đặt \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}=k\)
suy ra: a=a'k; b=b'k; c=c'k
thay vào biểu thức P ta được:
\(\dfrac{a'kx^2+b'kx+c'k}{a'x^2+b'x+c'x}=\dfrac{k\left(a'x^2+b'x+c'\right)}{a'x^2+b'x+c'}=k\)
vậy nếu \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\) thì biểu thức P không phụ thuộc vào x
Áp dụng tính chất cua dãy tỉ số bằng nhau ta có:
\(\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}=\frac{ax^2}{a_1x^2}=\frac{bx}{b_1x}=\frac{c}{c_1}=\frac{ax^2+bx+c}{a_1x^2+b_1x+c_1}=P\)
=>\(P=\frac{a}{a_1}\)
=>Giá trị của P phụ thuộc vào a và a1
VậyGiá trị của P không phụ thuộc vào x
Đặt \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=k\)
\(\Rightarrow k=\frac{ax^{2\: }}{a'x^2}=\frac{bx}{b'x}=\frac{c}{c'}=\frac{ax^{2\: }+bx+c}{a'x^2+b'x+c'}=P\)
Vậy P không phụ thuộc vào giá trị của x