Tìm số nguyên tố p sao cho: \(A=1+p+p^2+p^3+p^4\) là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko tận cùng là 2;3;7;8
ko tận cùng là 1 vì 11 chia 4 dư 3
ko tận cùng là 5 vì chia 55 chia 4 dư 3
ko tận cùng là 6 vì 66 chia 4 dư 2
ko tận cùng là 9 vì 99 chia 4 dư 3
vậy số có dạng là a000,a444
với số có dạng là a000 thì a chỉ có thể là 1;3;4;6;7;9
với số có dạng là a444 thì a chỉ có thể là 1;3;4;6;7;9
thử đi, có 6TH thôi=))
2. a và b đồng dư 0;1 mod 4
nên a-b đồng dư 0;1;3 mod 4
mà 2014 đồng dư 2 mod 4
nên ko tồn tại a;b
Giả sử p^4+p^3+p^2+p+1 = n^2
Ta có;
+) 4n^2 ≥ 4p^4 + 4p^3 + 4p^2 + 4p+ 4 ≥ 4p^4+ 4p^3 + p^2 = ( 2p^2 + p )^2 [**]
+) 4n^2 ≤ 4p^4 + 4p^3 + 4p^2 + 4p + 4 + 5p^2 = ( 2p^2 + p + 2 )^2 [***]
Từ [**] và [***], suy ra;
4n^2 = ( 2p^2 + p + 1 )^2
Suy ra; 2n = 2p^2 + p + 1
Bình phương hai vế của đẳng thức này và so sánh với n^2, ta suy ra;
p^2 - 2p - 3 = 0
\(\Leftrightarrow\) ( p + 1 )( p - 3 ) = 0
Vì p là số nguyên tố nên phương trình trên có nghiệm p = 3 thỏa mãn.
Vậy số nguyên tố cần tìm là 3.
Câu 2: Nếu a,b là số nguyên tố lớn hơn 3 => a,b lẻ
vì a ;b lẻ nên a;b chia 4 dư 1 hoặc 3(vì nếu dư 2 thì a ;b chẵn) đặt a = 4k +x ; b = 4m + y
với x;y = {1;3}
ta có:
a^2 - b^2 = (a-b)(a+b) = (4k -4m + x-y)(4k +4m +x+y) =
16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y)
nếu x = 1 ; y = 3 và ngược lại thì x+y chia hết cho 4 và x-y chia hết cho 2
=> 16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8
=> a^2 - b^2 chia hết cho 8
nếu x = y thì
x-y chia hết cho 8 và x+y chia hết cho 2
=> 4(k-m)(x+y) chia hết cho 8 và 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8
=> a^2 - b^2 chia hết cho 8
vậy a^2 - b^2 chia hết cho 8 với mọi a,b lẻ (1)
ta có: a;b chia 3 dư 1 hoặc 2 => a^2; b^2 chia 3 dư 1
=> a^2 - b^2 chia hết cho 3 (2)
từ (1) và (2) => a^2 -b^2 chia hết cho 24
Tick nha TFBOYS
3/ Ta có: A=xxyy=1000x+100x+10y+y=1100x+11y=11(100x+y)
Đề A là scp thì 100x+y =11.t2 (t thuộc Z) (1)
Ta có: 1=<x=<9 <=>100=<100x=<900(2)
0=<y=<9 (3)
Từ (2) và (3)=> 100=<100x+y=<909 (4)
Từ (1) và (4)=> 100x+y thuộc {176;275;396;539;704;891}
Mà 100x+y là số có dạng x0y(có dấu gạch trên đầu)
Do đó, x0y=704=> x=7 và y= 4
Bài 2:
a/ gọi 3 số chính phương liên tiếp đó là: (x-1)2;x2;(x+1)2
Ta có: (x-1)2+x2+(x+1)2= x2-2x+1+x2+x2+2x+1= 3x2+2
=> Tổng 3 số cp liên tiếp chia 3 dư 2
c/ Gọi 2 số lẻ đó là (2x-1)2 và (2x+1)2
(2x-1)2+(2x+1)2= 4x2-4x+1 +4x2+4x+1
= 8x2+2=2(4x2+1)
Ta có: 2 chia hết cho 2
=> 2(4x2+1) là scp thì 4x2+1 chia hết cho 2
mà 4x2+1 là số lẻ nên không chia hết cho 2
Do đó. tồng bình phương của 2 số lẻ bất kì không phải là số chính phương