K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

abcd = 1 \(\Rightarrow\hept{\begin{cases}ab=\frac{1}{cd}\\ac=\frac{1}{bd}\\bc=\frac{1}{ad}\end{cases}}\)

Áp dụng bđt AM-GM ta có:

A = \(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\)\(=\left(a^2+b^2+ab\right)+\left(c^2+d^2+cd\right)+ac+bc+bd+ad\)

\(=\left(a^2+b^2+ab\right)+\left(c^2+d^2+cd\right)+\left(\frac{1}{bd}+bd\right)+\left(\frac{1}{ad}+ad\right)\)

\(\ge3\sqrt{a^2.b^2.ab}+3\sqrt{c^2.d^2.cd}+2\sqrt{\frac{1}{bd}.bd}+2\sqrt{\frac{1}{ad}.ad}\)

\(\Leftrightarrow A\ge3ab+3cd+2+2\)\(=\frac{3}{cd}+3cd+4\ge2\sqrt{\frac{3}{cd}.3cd}+4=6+4=10\)

Dấu "=" xảy ra khi a = b = c = d = 1

8 tháng 3 2017

cố gắng giúp mình nha

30 tháng 9 2017

Áp dụng bđt Cô-si: \(a^2+b^2+c^2+d^2\)\(\ge4\sqrt[4]{a^2.b^2.c^2.d^2}\)\(=4\sqrt[4]{\left(abcd\right)^2}=4\sqrt[4]{1^2}=4;\)

\(a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)=ab+ac+bc+bd+dc+da\)

\(\ge6\sqrt[6]{ab.ac.bc.bd.dc.da}=6\sqrt[6]{\left(abcd\right)^3}=6\sqrt[6]{1^3}=6\)

=>\(a^2+b^2+c^2+d^2\)\(a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\ge4+6=10\)

Dấu "=" xảy ra khi a=b=c=d=1

28 tháng 3 2021

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2

14 tháng 4 2018

\(\left\{{}\begin{matrix}ab+ac+bc+bd+cd+da\ge4\sqrt[6]{ab.ac.bc.bd.cd.da}=6.\sqrt{abcd}=6\\a^2+b^2+c^2+d^2\ge4\sqrt[4]{a^2b^2c^2d^2}=4.\sqrt{abcd}=4\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)

(1) cộng (2) => dpcm

11 tháng 8 2017

nhan ra het roi dung cosi

1 cai la ra lien

11 tháng 8 2017

\(abcd=1;ab=\frac{1}{cd};ad=\frac{1}{bc};ac=\frac{1}{bd}\)

Ta có : \(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\)

\(=a^2+b^2+c^2+d^2+ab+ac+bc+bd+dc+ad\)

\(=a^2+b^2+c^2+d^2+\frac{1}{cd}+cd+\frac{1}{bd}+bd+\frac{1}{bc}+bc\)

\(\ge4\sqrt[4]{abcd}+2\sqrt{\frac{1}{cd}.cd}+2\sqrt{\frac{1}{bd}.bd}+2\sqrt{\frac{1}{bc}.bc}\)(Cauchy)

\(=4+2+2+2=10\)(đpcm)

Dấu"=" xảy ra \(\Leftrightarrow a=b=c=1\)