K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 1 2023

Từ giả thiết:

\(29\le y^2+2xy+4x\le y^2+2xy+x^2+4\)

\(\Rightarrow\left(x+y\right)^2\ge25\Rightarrow x+y\ge5\)

Đặt \(P=2x+3y+\dfrac{4}{x}+\dfrac{18}{y}\)

\(\Rightarrow P=x+y+\left(x+\dfrac{4}{x}\right)+2\left(y+\dfrac{9}{y}\right)\ge5+2\sqrt{\dfrac{4x}{x}}+2.2\sqrt{\dfrac{9y}{y}}=21\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;3\right)\)

4 tháng 8 2017

\(x^2+y^2+4=2xy+4x+4y\)

\(\Leftrightarrow x^2-\left(2y+4\right)x+y^2-4y+4=0\)

Xét phương trình theo nghiệm x.

\(\Rightarrow\Delta'=\left(y+2\right)^2-\left(y^2-4y+4\right)=8y\)

\(\Rightarrow\orbr{\begin{cases}x=y+2-2\sqrt{2y}\\x=y+2+2\sqrt{2y}\end{cases}}\)

Vì x, y nguyên dương nên 

\(\Rightarrow\sqrt{2y}=a\)

\(\Rightarrow y=2n^2\)

\(\Rightarrow\orbr{\begin{cases}x=2n^2+2-4n\\x=2n^2+2+4n\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(n-1\right)^2\\x=2\left(n+1\right)^2\end{cases}}\)

Vậy \(\frac{y}{2};\frac{x}{2}\)là 2 số chính phương.

4 tháng 8 2017

\(x^2+y^2+4=2xy+4x+4y\)

<=> \(\left(x^2-4x+4\right)+y^2-2y\left(x-2\right)=8y\)

<=> \(\left(x-y-2\right)^2=8y\)

<=> \(\left(\frac{x-y-2}{4}\right)^2=\frac{y}{2}\)

=> \(\frac{y}{2}\)là số chính phương

CMTT x/2 là số chính phương

AH
Akai Haruma
Giáo viên
30 tháng 1 2023

Lời giải:
Áp dụng BĐT AM-GM:
$1=xy+yz+xz+2xyz\leq \frac{(x+y+z)^2}{3}+2.\frac{(x+y+z)^3}{27}$

$\Leftrightarrow 1\leq \frac{t^2}{3}+\frac{2t^3}{27}$ (đặt $x+y+z=t$)

$\Leftrightarrow 2t^3+9t^2-27\geq 0$

$\Leftrightarrow (t+3)^2(2t-3)\geq 0$

$\Leftrightarrow 2t-3\geq 0$
$\Leftrightarrow t\geq \frac{3}{2}$ hay $x+y+z\geq \frac{3}{2}$ (đpcm)

Dấu "=" xảy ra khi $x=y=z=\frac{1}{2}$

31 tháng 1 2023

Cho em hỏi là thầy sài bđt gì vậy ạ?

 

30 tháng 1 2021

Ta có: \(\left(2x+3y\right)^2< \left(2x+3y\right)^2+5x+5y+1< \left(2x+3y+2\right)^2\).

Do đó để \(\left(2x+3y\right)^2+5x+5y+1\) là số chính phương thì \(\left(2x+3y\right)^2+5x+5y+1=\left(2x+3y+1\right)^2\Leftrightarrow x=y\).

Vậy x = y

30 tháng 1 2021

Tks bạn nhé

18 tháng 7 2016

21. Phân tích A thành \(A=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a^2+b^2+c^2+ab+bc+ac\right)\). Từ đó dễ dàng chứng minh.

18 tháng 7 2016

23. \(9y\left(y-x\right)=4x^2\Leftrightarrow9y^2-9xy=4x^2\Leftrightarrow4x^2+9xy-9y^2=0\)

Chia cả hai vế của đẳng thức trên với \(y^2>0\)được : 

\(4\left(\frac{x}{y}\right)^2+\frac{9x}{y}-9=0\). Đặt \(t=\frac{x}{y},t>0\)(Vì x,y dương)

\(\Rightarrow4^2+9t-9=0\Leftrightarrow\orbr{\begin{cases}t=\frac{3}{4}\left(\text{nhận}\right)\\t=-3\left(\text{loại}\right)\end{cases}}\)

Vậy \(\frac{x}{y}=\frac{3}{4}\Rightarrow y=\frac{4x}{3}\)thay vào biểu thức được :

\(\frac{x-y}{x+y}=\frac{x-\left(\frac{4x}{3}\right)}{x+\left(\frac{4x}{3}\right)}=-\frac{1}{7}\)