Cho tam giác ABC có góc A tù. Vẽ AD vuông góc AB và AD=AB (tia AD nằm giữa hai tia AB và AC), AE vuông góc AC và AE=AC (tia AE nằm giữa hai tia AB và AC). Gọi M là trung điểm của BC. Chứng minh rằng: AM vuông góc DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của ED và AM là K.Trên tia đối của MA lấy điểm F sao cho AM=FM.
Xét \(\Delta\)MAB và \(\Delta\)MFC có:
MA=MF,^BMA=^FMC,BM=CM => \(\Delta MAB=\Delta FMC\left(c-g-c\right)\Rightarrow AB=FC=AD,\widehat{ABM}=\widehat{FCM}\)
\(\Rightarrow AB//CF\Rightarrow\widehat{FCA}+\widehat{BAC}=180^0\left(1\right)\)
\(AD\perp AB\Rightarrow\widehat{BAE}+\widehat{EAD}=90^0\)
\(AE\perp AC\Rightarrow\widehat{CAD}+\widehat{EAD}=90^0\)
\(\Rightarrow\widehat{BAE}+\widehat{EAD}+\widehat{CAD}+\widehat{EAD}=180^0\)
\(\Rightarrow\widehat{BAC}+\widehat{EAD}=180^0\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{FCA}=\widehat{EAD}\)
Xét \(\Delta\)ADE và \(\Delta\)CFA có:
AE=AC(gt),^FCA=^EAD(cmt),AD=CF(cmt)
\(\Rightarrow\Delta ADE=\Delta CFA\left(c-g-c\right)\Rightarrow\widehat{AED}=\widehat{CAF}\)
Mặt khác:\(\widehat{CAF}+\widehat{FAF}=90^0\)
\(\Rightarrow\widehat{AED}+\widehat{FAE}=90^0\)
\(\Rightarrow\widehat{EAK}+\widehat{KAE}=90^0\)
\(\Rightarrow\widehat{EKA}=90^0\)
\(\Rightarrow AM\perp DE^{đpcm}\)