tìm các số nguyên x thỏa mãn :\(\frac{-1}{4}:\frac{-3}{4}+\frac{1}{2}< x< \frac{7}{8}-\frac{1}{2}:\frac{-5}{6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
a, \(3\frac{1}{3}\text{ : }2\frac{1}{2}-1< x< 7\frac{2}{3}\cdot\frac{3}{7}+\frac{5}{2}\)
\(\frac{10}{3}\text{ : }\frac{5}{2}-1< x< \frac{23}{3}\cdot\frac{3}{7}+\frac{5}{2}\)
\(\frac{4}{3}-1< x< \frac{23}{7}+\frac{5}{2}\)
\(\frac{1}{3}< x< \frac{81}{14}\)
\(\Rightarrow\text{ }0,\left(3\right)< x< 5,78...\)
\(\Rightarrow\text{ }x\in\left\{1\text{ ; }2\text{ ; }3\text{ ; }4\text{ ; }5\right\}\)
b, \(\frac{1}{2}-\left(\frac{1}{3}+\frac{1}{4}\right)< x< \frac{1}{48}-\left(\frac{1}{16}-\frac{1}{6}\right)\)
\(\frac{1}{2}-\frac{7}{12}< x< \frac{1}{48}+\frac{5}{48}\)
\(-\frac{1}{12}< x< \frac{1}{8}\)
\(\Rightarrow\text{ }-0,08\left(3\right)< x< 0,125\)
\(\Rightarrow\text{ }x\in\varnothing\)
Lời giải:
$x(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7})< 1\frac{6}{7}$
$x(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7})< \frac{13}{7}$
$x(1-\frac{1}{7})< \frac{13}{7}$
$x.\frac{6}{7}< \frac{13}{7}$
$x< \frac{13}{7}: \frac{6}{7}=\frac{13}{6}$
Vì $x$ là số nguyên nên $x\leq 2$
Vậy $x$ là các số nguyên sao cho $x\leq 2$.