Chứng minh rằng không có các số nguyên x,y,z thỏa mãn:4x2+4x=8y3-2z2+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có nhận xét sau : |x - y| và (x - y) có cùng tính chẵn lẻ
Mà (x - y) và (x + y) có cùng tính chẵn lẻ nên |x - y| và (x + y) có cùng tính chẵn lẻ
Do đó |x - y| + |y - z| + |z - x| có cùng tính chẵn lẻ với (x+ y) + (y + z) + (z + x)
mà (x+ y) + (y + z) + (z + x) = 2.(x+ y + z) là số chẵn nên |x - y| + |y - z| + |z - x| là số chẵn . Vậy |x - y| + |y - z| + |z - x| = 2013 không xảy ra nhé
Ta có nhận xét sau : |x - y| và (x - y) có cùng tính chẵn lẻ
Mà (x - y) và (x + y) có cùng tính chẵn lẻ nên |x - y| và (x + y) có cùng tính chẵn lẻ
Do đó |x - y| + |y - z| + |z - x| có cùng tính chẵn lẻ với (x+ y) + (y + z) + (z + x)
mà (x+ y) + (y + z) + (z + x) = 2.(x+ y + z) là số chẵn nên |x - y| + |y - z| + |z - x| là số chẵn . Vậy |x - y| + |y - z| + |z - x| = 2013 không xảy ra.
Ta có nhận xét sau : |x - y| và (x - y) có cùng tính chẵn lẻ
Mà (x - y) và (x + y) có cùng tính chẵn lẻ nên |x - y| và (x + y) có cùng tính chẵn lẻ
Do đó |x - y| + |y - z| + |z - x| có cùng tính chẵn lẻ với (x+ y) + (y + z) + (z + x)
mà (x+ y) + (y + z) + (z + x) = 2.(x+ y + z) là số chẵn nên |x - y| + |y - z| + |z - x| là số chẵn . Vậy |x - y| + |y - z| + |z - x| = 2013 không xảy ra nhé
Câu hỏi của An Thi Yen Nhi - Toán lớp 7 - Học toán với OnlineMath
Ta có:
\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+0}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2\left(x+y+z\right)}{xyz}}\)
\(=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{zx}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)
\(=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\) là số hữu tỉ
1. Ta chọn $x=3k;y=4k;z=5k$ với $k$ là số nguyên dương.
Khi này $x^2+y^2=25k^2 =z^2$. Tức có vô hạn nghiệm $(x;y;z)=(3k;4k;5k)$ với $k$ là số nguyên dương thỏa mãn