Tìm m để pt sau có nghiệm duy nhất :
\(\frac{x+2}{x-m}=\frac{x+1}{x-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) dễ rồi bạn chỉ việc bế x = 1/2 vào tìm m bình thường
b) mx - 2 + m = 3x
<=> ( m - 3 )x + m - 2 = 0
Để pt có nghiệm duy nhất thì m - 3 ≠ 0 <=> m ≠ 3
Khi đó nghiệm duy nhất là x = -m+2/m-3
1/ \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=x+\sqrt{\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}}\)
\(=x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=x+\left|\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right|=\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}\)
\(=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)
\(\Rightarrow m=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)
Để pt trên có nghiệm thì \(\hept{\begin{cases}m>0\\\sqrt{m}-\frac{1}{2}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>0\\m\ge\frac{1}{4}\end{cases}}\Leftrightarrow m\ge\frac{1}{4}\)
Vậy với \(m\ge\frac{1}{4}\) thì pt trên có nghiệm.
Phương trình trên chỉ có một nghiệm thôi nhé, đó là \(x=m-\sqrt{m}\) với \(m\ge\frac{1}{4}\)
\(ĐKXĐ:x\ne m;x\ne1\)
\(\frac{x+2}{x-m}=\frac{x+1}{x-1}\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=\left(x-m\right)\left(x+1\right)\)
\(\Leftrightarrow x^2+x-2=x^2-\left(m-1\right)x-m\)
\(\Leftrightarrow x-2=-\left(m-1\right)x-m\)
\(\Leftrightarrow x-2+\left(m-1\right)x+m=0\)
\(\Leftrightarrow mx+\left(m-2\right)=0\)
Đây là phương trình bậc nhất nên luôn có 1 nghiệm
Vậy pt có nghiệm duy nhất với mọi m.