K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

b: BH=CH=BC/2=3(cm)

nên AH=4(cm)

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại...
Đọc tiếp

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng

2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ADE\)

3. Cho \(\Delta ABC\) vuông ở A nội tiếp (O) đường kính 5cm . Tiếp tuyến với đường tròn tại C cắt phân giác \(\widehat{ABC}\)tại K . BK cắt AC tại D và BD = 4cm . Tính độ dài BK .  

4. Cho (O ; R).Từ một điểm M ở ngoài (O), kẻ 2 tiếp tuyến MA,MB với (O) (A, B là các tiếp điểm). Qua A kẻ đường thẳng song song với MO cắt (O) tại E, ME cắt (O) tại F. MO cắt AF, AB lần lượt tại N, H. Chứng minh MN = NH

5. Cho \(\Delta ABC\)nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ \(BD\perp AO\)(D nằm giữa A và O). Gọi M là trung điểm BC. AC cắt BD, MD lần lượt tại N, F. BD cắt (O) tại E. BF cắt AD tại H. Chứng minh DF // CE

0

1:

Xét ΔBAC có

BM,CN là trung tuyến

BM cắt CN tại G

=>G là trọng tâm

=>BG=2/3BM và CG=2/3CN

BG+CG>BC

=>2/3BM+2/3CN>BC

=>2/3(BM+CN)>BC

=>BM+CN>3/2BC

2:
BF=2BE

=>EF=BE

=>EF=2ED

=>D là trung điểm của EF

Xét ΔFEC có

CD,EK là trung tuyến

CD cắt EK tại G

=>G là trọng tâm

b: G là trọng tâm của ΔFEC

=>GE/GK=1/2 và GC/DC=2

20 tháng 4 2022

giúp mik với đang cần gấp lém :((
ét-o-ét 

góc BAC=góc BKH

=>góc BKH=góc BFC

=>HK//CF

Xét tứ giác PBQF có

góc PBQ=góc BQF=góc BPF=90 độ

=>PBQF là hình chữ nhật

=>góc BQP=góc FBQ=góc FBD=1/2*sđ cung FD

HK//CF

HK vuông góc AD

=>FC vuông góc AD

=>N là trung điểm của CF

=>góc BQP=1/2*sđ cung CD=góc CBD

=>BC//PQ

Gọi I là giao của PQ và CF

=>I là trung điểm của BF

BC//PQ

I là trung điểm của BF

=>PQ đi qua trung điểm của CF

=>AD,FC,PQ đồng quy