K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2017

A B C H M K I 1 2 3 1 2

a ) Tứ giác KMIH có \(\widehat{K}=\widehat{I}=\widehat{H}=90^0\Rightarrow\widehat{M_2}=90^0\)

=> Tứ giác KMIH là hình chữ nhật => MK = IH (1)

Ta có : \(\widehat{M_1}+\widehat{M_2}+\widehat{M_3}=180^0\) ( Kề bù ) => \(\widehat{M_1}+\widehat{M_3}=180^0-\widehat{M_2}=180^0-90^0=90^0\)

\(\Rightarrow\widehat{M_1}=90^0-\widehat{M_3}\) (2)

Tam giác IMC vuông tại I => \(\widehat{M_3}+\widehat{C}=90^0\Rightarrow\widehat{C}=90^0-\widehat{M_3}\) (3)

Từ (2) và (3) => \(\widehat{M_1}=\widehat{C}\)

Xét tam giác AKM và tam giác MIC có :

\(\widehat{K}=\widehat{I}=90^0\left(gt\right)\)

AM = MC (gt)

\(\widehat{M_1}=\widehat{C}\left(cmt\right)\)

=> tam giác AKM = tam giác MIC ( CH - GN )

=> IC = MK ( Cạnh tương ứng ) (4)

Từ (1) và (4) => MK = IC = IH (đpcm)

b ) tam giác AHC vuông H

Lại có HM là đường trung tuyến ứng với cạnh huyền là AC

=> \(HM=\frac{1}{2}AC\) ( ĐL đường trung tuyến ứng với cạnh huyền )

7 tháng 3 2017

toi cung chiu

18 tháng 3 2018

khó nhỉ

1: Xét ΔAHM vuông tại H và ΔAKM vuông tại K co

AM chung

góc HAM=góc KAM

=>ΔAHM=ΔAKM

=>AH=AK

=>ΔAHK cân tại A

2: AH=AK

MH=MH

=>AM là trung trực của HK

3:

a: Xét ΔAHC vuông tại H và ΔAKQ vuông tại K có

AH=AK

góc HAC chung

=>ΔAHC=ΔAKQ

=>AQ=AC
=>ΔAQC cân tại A

b: Xét ΔAQC có AH/AQ=AK/AC

nên HK//CQ

a: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

góc HAM=góc KAM

=>ΔAHM=ΔAKM

=>AK=AH

góc BAM+góc CAM=90 độ

góc BMA+góc MAH=90 độ

mà góc CAM=góc HAM

nên góc BAM=góc BMA

=>ΔBAM cân tại B

b: Xét ΔAIC có

CH,IK là đường cao

CH cắt IK tại M

=>M là trực tâm

=>AM vuông góc CI

Xét ΔACI có

AM vừa là đường cao, vừa là phân giác

=>ΔACI cân tại A

Xét ΔAIC có AH/AI=AK/AC

nên KH//IC

a) Ta xét ▵AHB và▵AHC, ta có

AH là cạnh chung

AC=AB ( vì tam giác cân tại A)

góc AHC = góc AHB là góc vuông (90 độ)

-> ▵AHB =▵AHC (cạnh huyền- cạnh góc vuông)

b) Ta có ▵AHB =▵AHC (cmt)

->HB=HC ( 2 cạnh tương ứng)

c) Ta xét ▵AKH và ▵AIH. Ta có: 

AH là cạnh chung 

góc AKH = góc AIK = 90 độ 

-> ▵AKH =▵AIH (cạnh huyền - cạnh góc vuông)

-> AK = AI (2 cạnh tương ứng) nên ▵AIK là tam giác cân và cân tại A

d) Ta áp dụng tính chất: Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau.

Ta có AH là cạnh chung cùng vuông góc với IK và BC

-> IK // BC

e) Ta cho giao điểm của AH và IK là O 

Ta xét ▵AKO và ▵AIO

Ta có AK=AI (cmt)

Góc AOK = góc AOI = 90 độ

-> ▵AKO = ▵AIO

-> KO = IO ( 2 cạnh tương ứng) -> AH là đường trung trực của đoạn thẳng IK