K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: ΔOCD cân tại O

mà OM là đường cao

nên OM là phân giác của góc COD

Xét ΔOCM và ΔODM có

OC=OD

góc COM=góc DOM

OM chung

Do đó: ΔOCM=ΔODM

=>góc ODM=90 độ

=>MD là tiếp tuyến của (O)

c: KD=CD/2=8

OK=căn 10^2-8^2=6

OK*OM=OD^2

=>OM=10^2/6=100/6=50/3

3 tháng 1 2023

mình cảm ơn yeu

 

b: ΔOCD cân tại O

mà OM là đường cao

nên OM là phân giác của góc COD

Xét ΔOCM và ΔODM có

OC=OD

góc COM=góc DOM

OM chung

Do đó: ΔOCM=ΔODM

=>góc ODM=90 độ

=>MD là tiếp tuyến của (O)

c: KD=CD/2=8

OK=căn 10^2-8^2=6

OK*OM=OD^2

=>OM=10^2/6=100/6=50/3

25 tháng 3 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tam giác COD cân tại O có OH là đường cao

⇒ OH cũng là tia phân giác ⇒ ∠(COM) = ∠(MOD)

Xét ΔMCO và ΔMOD có:

CO = OD

∠(COM) = ∠(MOD)

MO là cạnh chung

⇒ ΔMCO = ΔMOD (c.g.c)

⇒ ∠(MCO) = ∠(MDO)

∠(MCO) =  90 0 nên ∠(MDO) = 90 0

⇒ MD là tiếp tuyến của (O)

a: Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC

b: Xét (O) có

ΔCND nội tiếp

CD là đường kính

Do đó: ΔCND vuông tại N

=>CN\(\perp\)ND tại N

=>CN\(\perp\)AD tại N

Xét ΔDCA vuông tại C có CN là đường cao

nên \(AN\cdot AD=AC^2\left(3\right)\)

Ta có: OA là trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔOCA vuông tại C có CH là đường cao

nên \(AH\cdot AO=AC^2\left(4\right)\)

Từ (3) và (4) suy ra \(AN\cdot AD=AH\cdot AO\)

c: Ta có: \(AH\cdot AO=AN\cdot AD\)

=>\(\dfrac{AH}{AD}=\dfrac{AN}{AO}\)

Xét ΔAHN và ΔADO có

\(\dfrac{AH}{AD}=\dfrac{AN}{AO}\)

\(\widehat{HAN}\) chung

Do đó: ΔAHN đồng dạng với ΔADO

=>\(\widehat{AHN}=\widehat{ADO}\)

Ta có: ΔOCA vuông tại C

=>\(CO^2+CA^2=OA^2\)

=>\(CA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(CA=R\sqrt{3}\)

Ta có: ΔDCA vuông tại C

=>\(DC^2+CA^2=DA^2\)

=>\(DA^2=\left(2R\right)^2+\left(R\sqrt{3}\right)^2=7R^2\)

=>\(DA=R\sqrt{7}\)

Xét ΔDCA vuông tại C có \(sinCDA=\dfrac{CA}{DA}\)

=>\(sinCDA=\dfrac{R\sqrt{3}}{R\sqrt{7}}=\sqrt{\dfrac{3}{7}}=\dfrac{\sqrt{21}}{7}\)

=>\(sinAHN=\dfrac{\sqrt{21}}{7}\)

30 tháng 11 2021

a: Xét (O) có

KB là tiếp tuyến

KC là tiếp tuyến

Do đó: KB=KC

hay K nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OK là đường trung trực của BC