K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2023

Câu 1: Gieo 1 đồng tiền cân đối và đồng chất 2 lần

\(\Rightarrow n\left(\Omega\right)=2^2=4\)

Gọi A là biến cố cả hai lần xuất hiện mặt sấp
\(\Rightarrow A=\left\{SS\right\}\Rightarrow n\left(A\right)=1\)

Vậy \(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{1}{4}\)

Chọn B

Câu 2: Số phần tử không gian mẫu: \(n\left(\Omega\right)=6\)

Gọi biến cố A: “Số chấm là số nguyên tố xuất hiện”

\(A=\left\{2;3;5\right\}\)

\(\Rightarrow n\left(A\right)=3\)

Vậy \(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{3}{6}=\dfrac{1}{2}\)

Chọn A

NV
8 tháng 5 2023

1D

2A

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Tổng số kết quả có thể xảy ra của phép thử là \(n\left( \Omega  \right) = {2^4}\)

a) Biến cố đối của biến cố “Xuất hiện ít nhất ba mặt sấp” là biến cố “ Xuất hiện nhiều nhất một mặt sấp”

Biến cố xảy ra khi trên mặt đồng xu chỉ xuất hiện một hoặc không có mặt sấp nào. Số kết quả thuận lợi cho biến cố là \(C_4^1 + 1 = 5\)

Xác suất của biến cố là \(P = \frac{5}{{{2^4}}} = \frac{5}{{16}}\)

b) Biến cố đối của biến cố “Xuất hiện ít nhất một mặt ngửa” là biến cố “ Không xuất hiện mặt ngửa nào”

Biến cố xảy ra khi tất cả các mặt đồng là mặt sấp. Chỉ có 1 kết quả thuận lợi cho biến cố

Xác suất của biến cố là \(P = \frac{1}{{{2^4}}} = \frac{1}{{16}}\)

29 tháng 11 2017
xác suất mặt ngửa của đồng A là 1/2,của đồng B là 1/4
1.Gieo 2 đồng xu 1 lần,xác suất cả hai đều ngửa là 1/2*1/4 = 1/8
2.2 lần đều ngửa : 1/2*1/4*1/2*1/4 = 1/64
25 tháng 7 2018

Đáp án A. 

Xác suất một lần gieo được mặt một chấm là Xác suất để cả ba lần không gieo được mặt một chấm là Xác suất để có ít nhất một lần gieo được mặt một chấm trong ba lượt gieo là:

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:
Xác suất để xu 1 ngửa: $\frac{1}{2}$

Xác suất để xu 2 ngửa: $\frac{1}{2}$

Xác suất để xu 3 ngửa: $\frac{1}{2}$

Xác suất để 3 mặt cùng ngửa: $\frac{1}{2}.\frac{1}{2}.\frac{1}{2}=\frac{1}{8}$

NV
19 tháng 12 2020

Không gian mẫu: \(\left\{SS;NN;SN;NS\right\}\)

Xác suất: \(P=\dfrac{2}{4}=\dfrac{1}{2}\)

19 tháng 4 2023

sao 2/4 được ạ. xuất hiện mặt sấp đúng 1 lần chứ có phải là đúng lần 1 đâu mà biến cố là 2

NV
12 tháng 12 2021

Xác suất:

a. \(\dfrac{3}{6}.\dfrac{3}{6}=\dfrac{1}{4}\)

b. \(\dfrac{6}{36}=\dfrac{1}{6}\)

c. Xác suất mặt 6 chấm ko xuất hiện lần nào: \(\dfrac{5}{6}.\dfrac{5}{6}=\dfrac{25}{36}\)

Xác suất mặt 6 xuất hiện ít nhất 1 lần: \(1-\dfrac{25}{36}=\dfrac{11}{36}\)

d. Các trường hợp tổng 2 mặt lớn hơn hoặc bằng 10: (6;4), (4;6); (5;5); (5;6);(6;5);(6;6) có 6 khả năng

\(\Rightarrow36-6=30\) khả năng tổng số chấm bé hơn 10

Xác suất: \(\dfrac{30}{36}=\dfrac{5}{6}\)

NV
22 tháng 12 2022

Không gian mẫu: \(6.6=36\)

a.

Lần thứ nhất có 1 khả năng thỏa mãn (3 chấm)

Lần thứ 2 bất kì => có 6 khả năng

\(\Rightarrow1.6=6\) khả năng để lần thứ nhất xuất hiện mặt 3 chấm

Xác suất: \(P=\dfrac{6}{36}=\dfrac{1}{6}\)

b.

Xác suất để cả 2 lần đều ko xuất hiện mặt 2 chấm là: \(\dfrac{5}{6}.\dfrac{5}{6}=\dfrac{25}{36}\)

Xác suất để ít nhất 1 lần xuất hiện mặt 2 chấm: \(1-\dfrac{25}{36}=\dfrac{11}{36}\)

c.

Các trường hợp có số chấm thuận lợi: (1;1);(1;2);(1;3);(1;4);(2;1);(2;2);(2;3);(3;1);(3;2);(4;1) có 10 trường hợp

Xác suất: \(P=\dfrac{10}{36}=\dfrac{5}{18}\)

Thầy có thể giải thích hơn về câu a và câu b của bài này được không ạ?