Cho tam giác ABC vuông tại A. Vẽ AH vuôn góc với BC tại A. Vẽ AH vuông góc với BC tại H. Trên BC lây K sao cho BK=BA, trên AC lấy I sao cho AI=AH
a) CM: ABK cân
b) CM: góc BAH = ACB
c) CM: góc HAK = góc KAI
d) CM: AC vuông góc KI
e) CM: BC - AB > AC - AH
f) CM: AH + BC > AB + AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Vì AB=AH(gt)
AH=AI(gt)
=> AB+AI( áp dụng tính chất bắc cầu
2. Dễ thấy góc BAH=góc BCA vì cả hai góc cùng phụ với góc ABC:
góc BAH+gócHBA=90 độ (tam giác ABH vuông tại H)
góc BCA = góc ABC = 90 độ ( tam giác ABC vuông tại A)
a: Xét ΔBAK có BA=BK
nên ΔBAK cân tại B
b: góc BAH+góc B=90 độ
góc ACB+góc B=90 độ
=>góc BAH=góc ACB
góc HAK+góc BKA=90 độ
góc KAI+góc BAK=90 độ
mà góc BKA=góc BAK
nên góc HAK=góc KAI
d: (AH+BC)^2=AH^2+2*AH*BC+BC^2
=AH^2+2*AB*AC+AB^2+AC^2
=AH^2+(AB+AC)^2>(AB+AC)^2
=>AH+BC>AB+AC
c: AH+BC>AB+AC
=>BC-AB>AC-AH
Xét tam giác ABH vuông tại H, ta có: \(\widehat{BAH}=90-\widehat{ABC}\)
Xét tam giác ABC vuông tại A, ta có: \(\widehat{ACB}=90-\widehat{ABC}\)
Từ hai điều trên suy ra: \(\widehat{BAH}=\widehat{ACB}\)
Bạn tự vẽ hình nha ^^
a)--- Xét \(\Delta ABD\)và \(\Delta EBD\)có
\(AB=EB\left(GT\right)\)(1)
\(\widehat{BAD}=\widehat{BED}=90^o\)(2)
\(BD:\)Cạnh chung (3)
Từ (1) ;(2) và (3)
\(\Rightarrow\Delta ABD=\Delta EBD\)( c.g.c )
b)
---Theo đề bài ta có :
\(AB=EB\left(GT\right)\)(1)
và \(\widehat{ABC}=60^o\left(gt\right)\)(2)
Từ (1)và (2)\(\Rightarrow\Delta ABE\)đều (đpcm)
--- Vì \(\Delta ABE\)đều
\(\Rightarrow AB=BE=AE\)
Mà \(AB=6cm\)(gt)
...\(AE=EC\)
\(\Rightarrow EC=6cm\)
mà \(BE=6cm\)
Có \(EC+BE=BC\)
\(\Rightarrow6+6=12cm\)
Vậy BC =12cm