cho tam giác DEF cân tại D có DF=DE=5,EF=8.M,N lần lượt là trung điểm DF,DE.Kẻ DH vuông góc với EF.Tính DH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔDME và ΔDNF có
DM=DN
góc MDE chung
DE=DF
=>ΔDME=ΔDNF
=>EM=FN và góc DEM=góc DFN
b: Xet ΔNEF và ΔMFE có
NE=MF
EF chung
NF=ME
=>ΔNEF=ΔMFE
=>góc KEF=góc KFE
=>KE=KF
c: ΔDEF cân tại D
mà DH là đường cao
nên DH là trung tuyến
Xét ΔDEF có
DH,FN,EM là trung tuyến
=>DH,FN,EM đồng quy
a) Ta có: \(DN=\dfrac{DE}{2}\)(N là trung điểm của DE)
\(DM=\dfrac{DF}{2}\)(M là trung điểm của DF)
mà DE=DF(ΔDEF cân tại D)
nên DN=DM
Xét ΔDNH vuông tại H và ΔDMH vuông tại M có
DN=DM(cmt)
DH chung
Do đó: ΔDNH=ΔDMH(Cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{NDH}=\widehat{MDH}\)(hai góc tương ứng)
hay \(\widehat{EDH}=\widehat{FDH}\)
Xét ΔEDH và ΔFDH có
DE=DF(ΔDEF cân tại D)
\(\widehat{EDH}=\widehat{FDH}\)(cmt)
DH chung
Do đó: ΔEDH=ΔFDH(c-g-c)
Suy ra: HE=HF(Hai cạnh tương ứng)
a, Ta có: DH là đường cao trong tam giác cân DEF
⇒DH vừa là đường cao, vừa là đường trung tuyến trong tam giác cân DEF
⇒HE=HF
Ta có: HE=HF=EF/2=8/2=4 (cm)
Xét ΔDHE vuông tại H
Theo định lý Pi-ta-go, ta có:
DF²=DH²+HF²
⇒DH²=DF²-HF²
⇒DH²=5²-4²
⇒DH²=9
⇒DH=√9=3 (cm)
b, Xét ΔDME và ΔDNF có:
DM=DN (GT)
A là góc chung
DE=DF (GT)
⇒ ΔDME=ΔDNF (c.g.c)
⇒EM=FN (2 cạnh tương ứng)
DEM=DFN (2 góc tương ứng)
c, Ta có: E=F (GT)
và DEM=DFN (cmt)
⇒KEF=KFE
⇒ΔKEF cân tại K
⇒KE=KF
d, Ta có: DH⊥EF và HE=HF
⇒DH là đường trung trực của EF
mà KE=KF
⇒K là điểm thuộc đường trung trực DH
⇒D, K, H thẳng hàng
a: Ta có: ΔDEF cân tại D
mà DH là đường cao
nên H là trung điểm của FE
hay HF=HE
b: EF=6cm nên HF=3cm
=>DH=4cm
c: Xét ΔDME và ΔDNF có
DM=DN
\(\widehat{EMD}\) chung
DE=DF
Do đó: ΔDME=ΔDNF
a: Ta có: ΔDEF cân tại D
mà DH là đường cao
nên H là trung điểm của EF
hay EH=FH
b: EH=FH=EF/2=3(cm)
Xét ΔDHE vuông tại H có \(DE^2=DH^2+HE^2\)
nên DH=4(cm)
c: Xét ΔDEM và ΔDFN có
DE=DF
\(\widehat{EDM}\) chung
DM=DN
Do đó: ΔDEM=ΔDFN
Suy ra: \(\widehat{DEM}=\widehat{DFN}\)
d: Xét ΔNEH và ΔMFH có
NE=MF
\(\widehat{E}=\widehat{F}\)
EH=FH
Do đó: ΔNEH=ΔMFH
Suy ra: HN=HM
hay H nằm trên đường trung trực của MN(1)
Ta có: KM=KN
nên K nằm trên đường trung trực của MN(2)
Ta có: DN=DM
nên D nằm trên đường trung trực của MN(3)
Từ (1), (2) và (3) suy ra D,H,K thẳng hàng
a. xét tam giác DHE và tam giác DHF, có:
D: góc chung
DE = DF ( DEF cân )
DH: cạnh chung
Vậy tam giác DHE = tam giác DHF ( c.g.c )
=> HE = HF ( 2 cạnh tương ứng )
b.ta có: EH = EF :2 ( EF là đường cao cũng là trung tuyến ) = 6 : 2 =3 cm
áp dụng định lý pitago vào tam giác vuông DHE, có:
\(DE^2=DH^2+EH^2\)
\(\Rightarrow DH=\sqrt{DE^2-EH^2}=\sqrt{5^2-3^2}=\sqrt{16}=4cm\)
c.xét tam giác DEM và tam giác DFN có:
DE = DF ( DEF cân )
DM = DN ( gt )
D: góc chung
Vậy tam giác DEM = tam giác DFN ( c.g.c )
=> góc DEM = góc DFN ( 2 góc tương ứng )
d.xét tam giác DKM và tam giác DKN, có:
DM = DN ( gt )
D: góc chung
DK: cạnh chung
Vậy tam giác DKM = tam giác DKN ( c.g.c )
=> góc DKM = góc DKN = 90 độ ( tam giác BNM cân, K là trung điểm cũng là đường cao )
=> DK vuông BC
Mà DH cũng vuông BC
=> D,H,K thẳng hàng
Chúc bạn học tốt!!!
Sửa đề; DH vuông góc EF tại H
a: Xét ΔDHE vuông tại H và ΔDHF vuông tại H có
DE=DF
DH chung
Do đó: ΔDHE=ΔDHF
=>HE=HF
b: Ta có: HE=HF
H nằm giữa E và F
Do đó: H là trung điểm của EF
=>\(HE=HF=\dfrac{EF}{2}=4\left(cm\right)\)
ΔDHE vuông tại H
=>\(DH^2+HE^2=DE^2\)
=>\(DH^2=5^2-4^2=9\)
=>\(DH=\sqrt{9}=3\left(cm\right)\)
c: Ta có: \(DM=MF=\dfrac{DF}{2}\)
\(DN=NE=\dfrac{DE}{2}\)
mà DF=DE
nên DM=MF=DN=NE
Xét ΔDME và ΔDNF có
DM=DN
\(\widehat{MDE}\) chung
DE=DF
Do đó: ΔDME=ΔDNF
=>EM=FN và \(\widehat{DEM}=\widehat{DFN}\)
d: Xét ΔNEF và ΔMFE có
NE=MF
NF=ME
EF chung
Do đó: ΔNEF=ΔMFE
=>\(\widehat{NFE}=\widehat{MEF}\)
=>\(\widehat{KEF}=\widehat{KFE}\)
=>ΔKEF cân tại K
A) XÉT ΔDHE VÀ ΔDHF, CÓ
DE=DF (ΔDEF CÂN TẠI D)
\(\widehat{E}=\widehat{F}\) (ΔDEF CÂN TẠI D)
⇒ ΔDHE = ΔDHF (C.HUYỀN-G.NHỌN)
⇒\(\widehat{EDH}=\widehat{FDH}\) (2 GÓC T.ỨNG)
TA CÓ : EN=\(\dfrac{1}{2}\)DE
MÀ : DE=DF
⇒EN=FM B) XÉT ΔNEF VÀ ΔMFE CÓ
EF: CHUNG
\(\widehat{E}=\widehat{F}\)( TAM GIÁC DEF CÂN TẠI D)
EN=FM (CMT)
⇒ΔNEF = ΔMFE (C-G-C)
⇒EM=FN (2 CẠNH TƯƠNG ỨNG)
C) TA CÓ : EH=FH (ΔDHE=ΔDHF)
MÀ : EF=8
⇒DH LÀ TRUNG ĐIỂM CỦA EF
⇒EH=\(\dfrac{1}{2}EF\) = \(\dfrac{1}{2}\) .8 = 4
⇒EH=4
TRONG ΔDHE VUÔNG TẠI H
\(DE^2=HE^2+DH^2\) (ĐỊNH LÝ PTG)
⇒\(5^2=4^2+DH^2\)
⇒\(DH^2\)=25-16
⇒\(DH^2\) = 9
⇒DH=\(\sqrt{9}\)=3
a:
\(\widehat{HDE}+\widehat{E}=90^0\)(ΔHDE vuông tại H)
\(\widehat{E}+\widehat{F}=90^0\)(ΔEDF vuông tại D)
Do đó: \(\widehat{HDE}=\widehat{F}\)
ΔDEF vuông tại D
mà DM là đường trung tuyến
nên MD=MF
=>\(\widehat{MDF}=\widehat{MFD}=\widehat{F}\)
\(\widehat{EDH}+\widehat{MDH}+\widehat{FDM}=\widehat{EDF}=90^0\)
=>\(\widehat{F}+\widehat{MDH}+\widehat{F}=90^0\)
=>\(\widehat{MDH}+2\cdot\widehat{F}=\widehat{E}+\widehat{F}\)
=>\(\widehat{MDH}=\widehat{E}+\widehat{F}-2\cdot\widehat{F}=\widehat{E}-\widehat{F}\)
b:
Xét ΔDEF vuông tại D có DH là đường cao
nên \(DE\cdot DF=DH\cdot EF\)
ΔDEF vuông tại D
=>\(DE^2+DF^2=EF^2\)
\(\left(EF+DH\right)^2=EF^2+2\cdot EF\cdot DH+DH^2\)
\(=EF^2+2\cdot DE\cdot DF+DH^2\)
\(\left(DF+DE\right)^2=DF^2+2\cdot DF\cdot DE+DE^2\)
\(=\left(DF^2+DE^2\right)+2\cdot DF\cdot DE\)
\(=EF^2+2\cdot DH\cdot EF\)
\(\left(EF+DH\right)^2-\left(DF+DE\right)^2\)
\(=EF^2+2\cdot DH\cdot EF+DH^2-EF^2-2\cdot DH\cdot EF\)
\(=DH^2>0\)
=>EF+DH>DF+DE
=>EF-DE>DF-DH
Bài này thì cần gì cho M,N...
Bạn tự xử cái hình nha :>
Ta có: \(\Delta DEF\)cân tại \(D\Rightarrow DH\)vừa là đường cao vừa là trung tuyến
\(\Rightarrow EH=HF=\frac{EF}{2}=\frac{8}{2}=4\left(cm\right)\)
Tới đây bạn xét pytago cho \(\Delta DEH\)là được nhé!