K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2019

3. Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath

16 tháng 7 2021

giúp mình vớiiii

 

1 tháng 12 2021

Em gửi câu hỏi r mak

đây nek
Tìm bộ 3 số nguyên tố a,b,c sao cho a^2+b^2+c^2=abc

24 tháng 4 2018

\(\dfrac{4}{a+b}-\dfrac{2a^2+3b^2}{2a^3+3b^3}-\dfrac{2b^2+3a^2}{2b^3+3a^3}=\dfrac{\left(a-b\right)^2.\left(12b^4+12ab^3-a^2b^2+12a^3b+12a^4\right)}{\left(a+b\right)\left(2a^3+3b^3\right)\left(2b^3+3a^3\right)}\ge0\)

PS: Còn cách dùng holder nữa mà lười quá

24 tháng 4 2018

holder Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath

13 tháng 4 2017

Ta có: \(\frac{2a^2+3b^2}{2a^3+3b^3}\left(a+b\right)=1+ab\frac{2a+3b}{2a^3+3b^3}\)

Áp dụng BĐT Holder ta có: 

\(\left(2a^3+3b^3\right)\left(2+3\right)^2\ge\left(2a+3b\right)^3\)

Vậy ta có thể viết lại BĐT cần chứng minh như sau;

\(VT\left(a+b\right)\le2+25ab\left(\frac{1}{\left(2a+3b\right)^2}+\frac{1}{\left(2b+3a\right)^2}\right)\)

Nó đủ để ta có thể thấy rằng 

\(25ab\left[\left(2b+3a\right)^2+\left(2a+3b\right)^2\right]\le2\left(2a+3b\right)^2\left(2b+3a\right)^2\)

\(\Leftrightarrow59\left(a^2-b^2\right)^2+13\left(a^4+b^4-a^3b-ab^3\right)\ge0\)

BĐT cuối cùng đúng nên ta có ĐPCM

3 tháng 5 2020

ok jjj

4 tháng 9 2021
Chúc ngủ ngonDạo này có gì mới không?Chúc mừng sinh nhật

1) Thay b= 10; c = -9 vào biểu thức, ta có:

\(a+10-\left(-9\right)=18\)

\(a=18-10-9\)

\(a=-1\)

2) Thay b = -2; c= 4 vào biểu thức ta có:

\(2a-3.\left(-2\right)+4=0\)

\(2a+10=0\)

\(2a=-10\)

\(a=-5\)

3) Thay b = 6; c= -1 vào biểu thức ta có:

\(3a-6-2.\left(-1\right)=2\)

\(3a-4=2\)

\(3a=6\)

\(a=2\)

b) Thay b = -7; c= 5 vào biểu thức ta có:

\(12-a+\left(-7\right)+5.5=-1\)

\(12-a+18=-1\)

\(12-a=-19\)

\(a=-7\)

5) Thay b = -3; c= -7 vào biểu thức ta có:

\(1-2.\left(-3\right)+\left(-7\right)-3a=-9\)

\(-3a=-9\)

\(a=3\)

hok tốt!!