cho tam giác abc vuông tại a có ab = 12 ac =16 chứng minh đường thẳng bc là tiếp tuyến của đường tròn A bán kính =9,6cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường cao AH ( H thuộc BC)
Theo hệ thức giữa cạnh và đường cao trong tam giác vuông tính được \(\frac{1}{AH^2}\) =\(\frac{1}{AB^2}\) +\(\frac{1}{AC^2}\) (chỗ này bn tự thay số ở đề bài để tính nha)=>AH=12(=R)
=> đường thắng BC là tiếp tuyến của đường tròn tâm A, bán kính 12cm
chúc bn học tốt
\(\left\{{}\begin{matrix}\widehat{DCA}=\widehat{HCA}\\\widehat{DCA}+\widehat{DAC}=90^0\\\widehat{HCA}+\widehat{HBA}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{HBA}=\widehat{DAC}\)
\(\left\{{}\begin{matrix}\widehat{DAC}+\widehat{BAE}=90^0\\\widehat{HBA}+\widehat{HAB}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{BAE}=\widehat{HAB}\)
Có \(\left\{{}\begin{matrix}AH=AE=R\\\widehat{BAE}=\widehat{HAB}\\\text{AB chung}\end{matrix}\right.\) \(\Rightarrow\Delta AHB=\Delta AEB\)
\(\Rightarrow\widehat{E}=\widehat{H}=90^0\Rightarrow BE\) là tiếp tuyến
Kẻ AH vuông góc với BC
\(BC=\sqrt{12^2+16^2}=20\)
AH=12*16/20=9,6
Xét (A;9,6) có
AH là bán kính
BC vuông góc với AH tại H
Do đó: BC là tiếp tuyến của (A)