K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2021

Xét m=4 =>(d):y=1 =>Khoảng cách từ gốc tọa độ đến đt (d) khi đó là 1

Xét m=3 =>(d):x=-1=> Khoảng cách từ gốc tọa độ đến đt (d) khi đó là 1

Xét \(m\ne4;m\ne3\)

Gọi \(A=Ox\cap\left(d\right)\) \(\Rightarrow A\left(\dfrac{1}{m-4};0\right)\)\(B=Oy\cap\left(d\right)\Rightarrow B\left(0;\dfrac{1}{m-3}\right)\)

Gọi H là hình chiếu của O lên AB

Có \(OH^2=\dfrac{OA^2.OB^2}{OA^2+OB^2}=\dfrac{\left(\dfrac{1}{m-4}\right)^2.\left(\dfrac{1}{m-3}\right)^2}{\left(\dfrac{1}{m-4}\right)^2+\left(\dfrac{1}{m-3}\right)^2}\)

\(=\dfrac{1}{\left(m-4\right)^2\left(m-3\right)^2\left[\dfrac{1}{\left(m-4\right)^2}+\dfrac{1}{\left(m-3\right)^2}\right]}\)

\(=\dfrac{1}{\left(m-4\right)^2+\left(m-3\right)^2}\)

\(=\dfrac{1}{2m^2-14m+25}=\dfrac{1}{2\left(m-\dfrac{7}{2}\right)^2+\dfrac{1}{2}}\le2\)

=> \(OH\le\sqrt{2}\)

=> Khoảng cách lớn nhất gốc tọa độ đến (d) là \(\sqrt{2}\Leftrightarrow m=\dfrac{7}{2}\) (thỏa)

29 tháng 5 2021

Xét điểm \(A\left(-1;1\right)\). Dễ thấy A thuộc (d). Gọi H là hình chiếu của O trên (d). Ta có \(OH\le OA=\sqrt{2}\). Dấu "=" xảy ra khi và chỉ khi \(H\equiv A\), tức là \(d\perp OA\).

Ta cần tìm m sao cho \(d\perp OA\). Phương trình đường thẳng đi qua O, A là
y = -x. Xét m = 4 thì đường thẳng (d) trở thành \(y=1\), đường thẳng này song song với trục hoành và không vuông góc với d. Xét m khác 4. Khi đó \(\left(m-4\right)x+\left(m-3\right)y=1\Leftrightarrow y=\dfrac{4-m}{m-3}x+\dfrac{1}{m-3}\). Để \(d\perp OA\) thì \(\dfrac{4-m}{m-3}.\left(-1\right)=-1\Leftrightarrow4-m=m-3\Leftrightarrow m=\dfrac{7}{2}\).

Vậy Max \(OH=\sqrt{2}\Leftrightarrow m=\dfrac{7}{2}\).

NV
2 tháng 9 2021

Gọi A là giao điểm của d với Ox \(\Rightarrow A\left(-\dfrac{1}{m-3};0\right)\Rightarrow OA=\dfrac{1}{\left|m-3\right|}\)

Gọi B là giao điểm của d với Oy \(\Rightarrow B\left(0;1\right)\Rightarrow OB=1\)

Từ O kẻ OH vuông góc AB \(\Rightarrow OH=\dfrac{1}{2}\)

Áp dụng hệ thức lượng trong tam giác vuông OAB:

\(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}\Rightarrow4=\left(m-3\right)^2+1\)

\(\Rightarrow\left(m-3\right)^2=3\Rightarrow\left[{}\begin{matrix}m=3+\sqrt{3}\\m=3-\sqrt{3}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
22 tháng 12 2021

Lời giải:

Nếu $(1)$ song song với $Ox$ thì $2m-3=0$

Khi đó, ptđt $(1)$ là: $y=-1$. Khoảng cách từ $O$ đến $(1)$ là: $|-1|=1$

Nếu $(1)$ song song với $Oy$ không xét, vì hệ số của $y$ khác $0$ nên $(1)$ luôn cắt $Oy$

Nếu $(1)$ cắt được cả Ox, Oy thì trước tiên $2m-3\neq 0\Leftrightarrow m\neq \frac{3}{2}$

Gọi $A, B$ là giao của $(1)$ với lần lượt trục $Ox, Oy$

$A\in Ox$ nên $y_A=0$. Ta có:

$0=y_A=(2m-3)x_A-1\Rightarrow x_A=\frac{1}{2m-3}$

$B\in Oy$ nên $x_B=0$. Ta có:

$y_B=(2m-3)x_B-1=-1$

Theo hệ thức lượng trong tam giác vuông, khoảng cách từ $O$ đến $(1)$ (gọi là $d$) thỏa mãn:
$\frac{1}{d^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{|x_A|^2}+\frac{1}{|y_B|^2}$

$=(2m-3)^2+1$

Để $d_{\max}$ thì $\frac{1}{d^2}$ min hay $(2m-3)^2+1$ min 

Điều này xảy ra khi $(2m-3)^2=0$ (vô lý vì $m\neq \frac{3}{2}$)

Vậy khoảng cách max là $1$ khi $m=\frac{3}{2}$

16 tháng 4 2020

rưefdrgrtyh