Cho hàm số
y=f(x)= -5x
CMR : với x1<x2 thì f(x1)>f(x2)
f(x1+4x2)=f(x1)+4f(x2)
-f(x)=f(-x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này nhớ không nhầm là toán 7 :>
a) Gọi x1 và x2 là hai gtrị tương ứng của x
Giả sử x1<x2
Vì y=f(x) =-5x
\(\Rightarrow\)f(x1)=-5x1
\(\Rightarrow\)f(x2)=-5x2
mà x1<x2 \(\Rightarrow\)f(x1)>f(x2)
\(\Rightarrow\)Hs là hs nghịch biến
b) Vì y=f(x)=-5x
\(\Rightarrow\)f(x1)+4f(x2)
=-5x1+4(-5)x2
=-5(x1+4x2) (*)
\(\Rightarrow\)f(x1+4x2)=-5(x1+4x2) (**)
Từ (*), (**) \(\Rightarrow\)f(x1+4x2)=f(x1)+4f(x2)
c) Vì y=f(x)=-5x
\(\Rightarrow\)-f(x)=5x (*)
\(\Rightarrow\)f(-x)=-5(-x) =5x (**)
Từ (*) và (**) \(\Rightarrow\)-f(x) =f(-x)
a. ta có \(f\left(10x\right)=k.10x=10.kx=10f\left(x\right)\)
b. \(f\left(x_1+x_2\right)=k\left(x_1+x_2\right)=kx_1+kx_2=f\left(x_1\right)+f\left(x_2\right)\)
c.\(f\left(x_1-x_2\right)=k\left(x_1-x_2\right)=kx_1-kx_2=f\left(x_1\right)-f\left(x_2\right)\)
Lời giải:
$f(x_1)-f(x_2)=2018mx_1-2018mx_2=2018m(x_1-x_2)$
$=f(x_1-x_2)$ (đpcm)
$f(kx)=2018m(kx)=k.2018mx=kf(x)$ (đpcm)
a) Ta có: f(x1)=-5x1; f(x2)=-5x2
Nếu x1<x2 => -5x1>-5x2 => f(x1)>f(x2) => Đpcm
b) f(x1+4x2)=-5(x1+4x2)=-5x1+4.(-5x2)=f(x1)+4. f(x2)=> Đpcm
c) -f(x)=-(-5x)=-5.(-x)=f(-x) => Đpcm