tìm x,y thỏa mãn đẳng thức sau: x2-2xy+2y2+2y+1=0
tính giá trị của biểu thức : B=2022x+2023y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho các số x khác 2y thỏa mãn x2- 2xy - 2y2 - 3x +6y=0
Tính giá trị biểu thức A= x2+ 2xy _y2 - 2x- 2y
3x^2+3y^2+4xy-2x+2y+2=0
=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0
=>x=1 và y=-1
M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1
x^2+y^2-2x-4y+6=1-(x-y+1)^2
=>x^2-2x+1+y^2-4y+4=-(x-y+1)^2
=>(x-1)^2+(y-2)^2=-(x-y+1)^2
=>(x-1)^2+(y-2)^2+(x-y+1)^2=0
=>x=1;y=2
A=2022+2023*2
=2022+4046
=6068
2x2 + 2y2 + 3xy - x + y + 1 = 0
2x2 + 2y2 + 4xy - xy - x + y + 1 = 0
(2x2 + 2y2 + 4xy) + (-xy - x) + (y + 1) = 0
2(x + y)2 - x(y + 1) + (y + 1) = 0
2(x + y)2 + (y + 1)(1 - x) = 0
Do (x + y)2 \(\ge0\)
\(\Rightarrow\) 2(x + y)2 \(\ge0\)
\(\Rightarrow\) 2(x + y)2 + (y + 1)(1 - x) = 0 \(\Leftrightarrow\) (y + 1)(1 - x) = 0
\(\Rightarrow y+1=0;1-x=0\)
*) y + 1 = 0
y = -1
*) 1 - x = 0
x = 1
Với x = 1; y = -1, ta có:
B = [1 + (-1)]2018 + (1 - 2)2018 + (-1 - 1)2018
= 1 + 22018
(x-1)^2+|2y-3|=0
=>x-1=0 và 2y-3=0
=>x=1 và y=1,5
B=4*1^20+5*1^2*1,5-6*1,5+2
=4+7,5-9+2
=4,5
A.
$a^2+4b^2+9c^2=2ab+6bc+3ac$
$\Leftrightarrow a^2+4b^2+9c^2-2ab-6bc-3ac=0$
$\Leftrightarrow 2a^2+8b^2+18c^2-4ab-12bc-6ac=0$
$\Leftrightarrow (a^2+4b^2-4ab)+(a^2+9c^2-6ac)+(4b^2+9c^2-12bc)=0$
$\Leftrightarrow (a-2b)^2+(a-3c)^2+(2b-3c)^2=0$
$\Rightarrow a-2b=a-3c=2b-3c=0$
$\Rightarrow A=(0+1)^{2022}+(0-1)^{2023}+(0+1)^{2024}=1+(-1)+1=1$
B.
$x^2+2xy+6x+6y+2y^2+8=0$
$\Leftrightarrow (x^2+2xy+y^2)+y^2+6x+6y+8=0$
$\Leftrightarrow (x+y)^2+6(x+y)+9+y^2-1=0$
$\Leftrightarrow (x+y+3)^2=1-y^2\leq 1$ (do $y^2\geq 0$ với mọi $y$)
$\Rightarrow -1\leq x+y+3\leq 1$
$\Rightarrow -4\leq x+y\leq -2$
$\Rightarrow 2020\leq x+y+2024\leq 2022$
$\Rightarrow A_{\min}=2020; A_{\max}=2022$
=>x^2-2xy+y^2+y^2+2y+1=0
=>(x-y)^2+(y+1)^2=0
=>x=y=-1
B=-2022-2023=-4045