cho hình thang abcd .hai đường chéo ac và bd cắt nhau tại o .biết diện tích tam giác aob là 12 cm2 diện tích tam giác boc là 36cm2 .
so sánh độ dài 2 đáy hình thang ab và cd ai trả lời sớm nhất mình tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ABssCD\Rightarrow\dfrac{AB}{CD}=\dfrac{OB}{OD}=\dfrac{OA}{OC}=\dfrac{2}{3}\)
a)\(S_{AOD}=\dfrac{1}{2}OA.OD.sinAOB\)
\(S_{BOC}=\dfrac{1}{2}OB.OC.sinBOC\)
\(\Rightarrow\dfrac{S_{AOD}}{S_{BOC}}=\dfrac{OA.OD}{OB.OC}\) vì \(\widehat{AOD}=\widehat{BOC}\Rightarrow sinAOD=sinBOC\)
\(\Leftrightarrow\dfrac{S_{AOD}}{S_{BOC}}=\dfrac{2}{3}.\dfrac{3}{2}=1\)
b) vì \(ABssCD\Rightarrow\dfrac{OH}{OK}=\dfrac{2}{3}\Rightarrow\dfrac{OH}{HK}=\dfrac{2}{5}\)
\(S_{AOB}=\dfrac{1}{2}.OH.AB\\ S_{ABCD}=\dfrac{1}{2}\left(AB+CD\right).HK=\dfrac{1}{2}\left(AB+\dfrac{3}{2}AB\right).HK=\dfrac{1}{2}.\dfrac{5}{2}AB.HK\)
\(\Rightarrow\dfrac{S_{AOB}}{S_{ABCD}}=\dfrac{\dfrac{1}{2}OH.AB}{\dfrac{1}{2}HK.\dfrac{5}{2}AB}=\dfrac{2}{5}.\dfrac{1}{\dfrac{5}{2}}=\dfrac{4}{25}\)
\(\Rightarrow S_{ABCD}=\dfrac{4}{\dfrac{4}{25}}=25\)
b) Ta có :
\(S_{ABC}=\frac{1}{2}S_{ADC}\)
- Có chiều cao bằng chiều cao hình thang
- Đáy AB = 1/2 DC
Mặt khác vì hai tam giác có chung đáy AC nên chiều cao hạ từ B xuống O sẽ bằng 1/2 chiều cao hạ từ D xuống O
Từ đó ta có thể suy ra : BO = 1/2 DO (1)
Ta có : \(S_{AOB}=\frac{1}{2}S_{AOD}\)
- Chung cao hạ từ A xuống O
- Đáy BO = 1/2 DO (1)
Hay \(S_{AOB}=\frac{1}{3}S_{ABD}\)
\(\Rightarrow S_{AOB}=\frac{1}{3}\cdot\frac{1}{3}=\frac{1}{9}S_{ABCD}\)