Cho a, b, c > 0 và \(a+\sqrt{ab}+\sqrt[3]{abc}=\dfrac{4}{3}\) .
Tìm MIN : \(Q=a+b+c\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Bài này bạn chịu khó tìm điểm rơi rồi áp BĐT AM-GM vào thôi:
Áp dụng BĐT AM-GM:
\(\sqrt{ab}=\frac{1}{2}\sqrt{a.4b}\leq \frac{a+4b}{4}\)
\(\sqrt[3]{abc}=\frac{1}{4}\sqrt[3]{a.4b.16c}\leq \frac{a+4b+16c}{12}\)
Cộng theo vế:
\(\Rightarrow a+\sqrt{ab}+\sqrt[3]{abc}\leq a+\frac{a+4b}{4}+\frac{a+4b+16c}{12}=\frac{4}{3}(a+b+c)\)
Mà \(a+\sqrt{ab}+\sqrt[3]{abc}=\frac{4}{3}\Rightarrow a+b+c\geq 1\)
Vậy \((a+b+c)_{\min}=1\)
Từng sau em hạn chế đăng nhiều bài cùng một lúc như thế này nhé.
Bài 1:
Ta có: \(a+\frac{4}{(a-b)(b+1)^2}=(a-b)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{(a-b)(b+1)^2}-1\)
Áp dụng BĐT AM-GM cho các số không âm ta có:
\((a-b)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{(a-b)(b+1)^2}\geq 4\sqrt[4]{\frac{4(a-b)(b+1)^2}{4(a-b)(b+1)^2}}=4\)
\(\Rightarrow a+\frac{4}{(a-b)(b+1)^2}=(a-b)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{(a-b)(b+1)^2}-1\geq 4-1\)
\(\Leftrightarrow a+\frac{4}{(a-b)(b+1)^2}\geq 3\)
Ta có đpcm.
Dấu bằng xảy ra khi \(a-b=\frac{b+1}{2}=\frac{4}{(a-b)(b+1)^2}\)
\(\Leftrightarrow a=2; b=1\)
Bài 2:
Đặt \(\left(\frac{a}{b}, \frac{b}{c}, \frac{c}{a}\right)\mapsto (x,y,z)\Rightarrow xyz=1\)
BĐT cần chứng minh tương đương với:
\(x^2+y^2+z^2\geq \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow x^2+y^2+z^2\geq \frac{xy+yz+xz}{xyz}=xy+yz+xz(*)\)
Áp dụng BĐT AM-GM:
\(x^2+y^2\geq 2\sqrt{x^2y^2}=2xy\)
\(y^2+z^2\geq 2\sqrt{y^2z^2}=2yz\)
\(z^2+x^2\geq 2\sqrt{z^2x^2}=2zx\)
Cộng theo vế: \(\Rightarrow 2(x^2+y^2+z^2)\geq 2(xy+yz+xz)\)
\(\Leftrightarrow x^2+y^2+z^2\geq xy+yz+xz\)
Do đó (*) đúng, ta có đpcm.
Dấu bằng xảy ra khi \(x=y=z=1\Leftrightarrow a=b=c\)
Bài 3:
Ta có: \(\text{VT}=(\frac{b}{\sqrt{a}}+\frac{c}{\sqrt{b}}+\frac{a}{\sqrt{c}})+(\frac{c}{\sqrt{a}}+\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}})\)
Áp dụng BĐT Bunhiacopxky:
\((\frac{b}{\sqrt{a}}+\frac{c}{\sqrt{b}}+\frac{a}{\sqrt{c}})(\sqrt{a}+\sqrt{b}+\sqrt{c})\geq (\sqrt{b}+\sqrt{c}+\sqrt{a})^2\)
\(\frac{b}{\sqrt{a}}+\frac{c}{\sqrt{b}}+\frac{a}{\sqrt{c}}\geq \sqrt{a}+\sqrt{b}+\sqrt{c}(1)\)
Áp dụng BĐT AM-GM:
\(\frac{c}{\sqrt{a}}+\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}\geq 3\sqrt[3]{\frac{abc}{\sqrt{abc}}}=3(2)\) do $abc=1$
Từ \((1); (2)\Rightarrow \text{VT}\geq \sqrt{a}+\sqrt{b}+\sqrt{c}+3\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)
Bài 1:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{2ab}+\frac{1}{a^2+b^2}\geq \frac{4}{2ab+a^2+b^2}=\frac{4}{a+b)^2}=4(1)\)
Áp dụng BĐT AM-GM:
\(1=a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{1}{4}\Rightarrow \frac{3}{2ab}\geq 6(2)\)
\(a^4+b^4\geq \frac{(a^2+b^2)^2}{2}\geq \frac{(\frac{(a+b)^2}{2})^2}{2}=\frac{1}{8}\) \(\Rightarrow \frac{a^4+b^4}{2}\geq \frac{1}{16}(3)\)
Từ \((1);(2);(3)\Rightarrow P\geq 4+6+\frac{1}{16}=\frac{161}{16}\)
Vậy \(P_{\min}=\frac{161}{16}\). Dấu bằng xảy ra tại $a=b=0,5$
Bài 2:
Áp dụng BĐT Cauchy-Schwarz:
\(2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)\geq 2. \frac{4}{x^2+y^2+2xy}=\frac{8}{(x+y)^2}=\frac{9}{2}\)
Áp dụng BĐT AM-GM:
\(\frac{80}{81xy}+5xy\geq 2\sqrt{\frac{80}{81}.5}=\frac{40}{9}\)
\(\frac{4}{3}=a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{4}{9}\Rightarrow \frac{1}{81ab}\geq \frac{1}{36}\)
Cộng những BĐT vừa cm được ở trên với nhau:
\(\Rightarrow A\geq \frac{9}{2}+\frac{40}{9}+\frac{1}{36}=\frac{323}{36}\)
Vậy \(A_{\min}=\frac{323}{36}\Leftrightarrow a=b=\frac{2}{3}\)
\(A=\frac{a\sqrt{a}}{\sqrt{a+b+2c}}+\frac{b\sqrt{b}}{\sqrt{b+c+2a}}+\frac{c\sqrt{c}}{\sqrt{c+a+2b}}\)
\(A=\frac{a^2}{\sqrt{a\left(a+b+2c\right)}}+\frac{b^2}{\sqrt{b\left(b+c+2a\right)}}+\frac{c^2}{\sqrt{c\left(c+a+2b\right)}}\)
\(\ge\frac{\left(a+b+c\right)^2}{\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}}\)
Xét: \(2\left(\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}\right)\)
\(=\sqrt{4a\left(a+b+2c\right)}+\sqrt{4b\left(b+c+2a\right)}+\sqrt{4c\left(c+a+2b\right)}\)
\(\le\frac{4a+a+b+2c+4b+b+c+2a+4c+c+a+2b}{2}=4\left(a+b+c\right)\)
\(\Rightarrow\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}\le2\left(a+b+c\right)\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\)
\("="\Leftrightarrow a=b=c=1\)
\(\dfrac{4}{3}\le a+\sqrt{ab}+\sqrt[3]{abc}=a+\sqrt[]{\dfrac{a}{2}.2b}+\sqrt[3]{\dfrac{a}{4}.b.4c}\)
\(\le a+\dfrac{1}{2}\left(\dfrac{a}{2}+2b\right)+\dfrac{1}{3}\left(\dfrac{a}{4}+b+4c\right)=\dfrac{4}{3}\left(a+b+c\right)\)
\(\Rightarrow Q\ge1\)
\(Q_{min}=1\) khi \(\left(a;b;c\right)=\left(\dfrac{16}{21};\dfrac{4}{21};\dfrac{1}{21}\right)\)