K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:

\(a^2+b^2+c^2=(a+b)^2-2ab+c^2=(-c)^2-2ab+c^2=2(c^2-2ab)\)

\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc\)

Do đó: 

$2(a^2+b^2+c^2).3(a^3+b^3+c^3)=36abc(c^2-2ab)$

Mặt khác:
\(a^5+b^5+c^5=(a^2+b^2)(a^3+b^3)-a^2b^2(a+b)+c^5\)

\(=[(a+b)^2-2ab][(a+b)^3-3ab(a+b)]-a^2b^2(-c)+c^5\)

\(=(c^2-2ab)(-c^3+3abc)+a^2b^2c+c^5\)

\(=-c^5+3abc^3+2abc^3-6a^2b^2c+a^2b^2c+c^5\)

\(=5abc^3-5a^2b^2c=5abc(c^2-ab)\)

\(\Rightarrow 5(a^5+b^5+c^5)=25abc(c^2-ab)\)

Do đó 2 đẳng thức trên không bằng nhau.

 

14 tháng 5 2021

a )

`VP= (a+b)^3-3ab(a+b)`

     `=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2`

     `=a^3+b^3 =VT (đpcm)`

b) 

b) Ta có

`VT=a3+b3+c3−3abc`

     `=(a+b)3−3ab(a+b)+c3−3abc`

     `=[(a+b)3+c3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)2+c2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a2+b2+2ab+c2−ac−bc−3ab)`

    `=(a+b+c)(a2+b2+c2−ab−bc−ca)=VP`

  
14 tháng 5 2021

 

a) Ta có:

`VP= (a+b)^3-3ab(a+b)`

     `=a^3 + b^3+3ab ( a + b )- 3ab ( a + b )`

     `=a^3 + b^3=VT(dpcm)`

b) Ta có

`VT=a^3+b^3+c^3−3abc`

     `=(a+b)^3−3ab(a+b)+c^3−3abc`

     `=[(a+b)^3+c^3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)^2+c^2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a^2+b^2+2ab+c^2−ac−bc−3ab)`

    `=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)=VP`

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

1. Đề sai với $a=1; b=0; c=-1$

2. Vì $a+b+c=0\Rightarrow a+b=-c$. Khi đó:

$a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$

$=(-c)^3-3ab(-c)+c^3=-c^3+3abc+c^3=3abc$ (đpcm)

3. Đề sai.

$a^5+b^5+c^5=(a^2+b^2)(a^3+b^3)-a^2b^2(a+b)+c^5$

$=[(a+b)^2-2ab][(a+b)^3-3ab(a+b)]-a^2b^2(-c)+c^5$

$=[(-c)^2-2ab][(-c)^3-3ab(-c)]+a^2b^2c+c^5$

$=(c^2-2ab)(3abc-c^3)+a^2b^2c+c^5$

$=3abc^3-c^5-6a^2b^2c+2abc^3+a^2b^2c+c^5$

$=3abc^3-6a^2b^2c+2abc^3+a^2b^2c$

$=abc(5c^2-5ab)=5abc(c^2-ab)$

2:Ta có: a+b+c=0

nên \(\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

22 tháng 4 2022

ké ý (b) ạ!!!

27 tháng 11 2023

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

=>\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)

=>\(2\left(ab+bc+ac\right)=0\)

=>ab+bc+ac=0

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

=>\(\dfrac{\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3}{\left(abc\right)^3}=\dfrac{3}{abc}\)

=>\(\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3=3\left(abc\right)^2\)

\(\Leftrightarrow\left(ab+bc\right)^3-3\cdot ab\cdot bc\cdot\left(ab+bc\right)+\left(ac\right)^3=3\left(abc\right)^2\)

=>\(\left(-ac\right)^3-3\cdot ab\cdot bc\cdot\left(-ac\right)+\left(ac\right)^3-3\left(abc\right)^2=0\)

=>\(-a^3c^3+a^3c^3+3a^2b^2c^2-3a^2b^2c^2=0\)

=>0=0(đúng)

1: Ta có: \(a^2+b^2+c^2\)

\(=\left(a+b+c\right)^2-2\cdot\left(ab+bc+ca\right)\)

\(=5^2-2\cdot174=-323\)