Chứng minh: \(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{11}{5^{12}}<\frac{1}{16}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5A=1/5=2/5^2+......+11/5^11
4A=1/5+1/5^2+......+1/5^11-11/5^12
20A=1+1/5+1/5^2+.....+1/5^10-11/5^11
16A=1-1/5^11+11/5^12-11/5^11
vi 1-1/5^11<1;11/5^12-11/5^11<0
16A<1
A<1/16
k cho minh nhe
Bonking
bn tham khảo đây nhé :
Câu hỏi của Khanh Mai Lê - Toán lớp 6 - Học toán với OnlineMath
mình tính siêu đúng
...
5A=\(\frac{1}{5}+\frac{2}{5^2}...+\frac{n}{5^n}...+\frac{11}{5^{11}}\)
=>4A=5A-A=\(\frac{1}{5}+\frac{1}{5^2}...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)
=>20A=\(1+\frac{1}{5}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)
=>16A=20A-4A=\(1-\frac{1}{5^{11}}+\frac{11}{5^{12}}-\frac{11}{5^{11}}\)
Mà \(1-\frac{1}{5^{11}}< 1\),\(\frac{11}{5^{12}}-\frac{11}{5^{11}}< 0\)
=>16A<1
Do đó: A<1/16(đpcm)
\(A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{11}{5^{11}}\Rightarrow5A=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{11}{5^{10}}\)
\(\Rightarrow4A=5A-A=1+\left(\frac{1}{5}+\frac{1}{5^2}+\frac{...1}{5^{10}}\right)-\frac{11}{5^{11}}\)
\(< 1+\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\right)< 1+\frac{1}{4}=\frac{5}{4}\)
\(\Rightarrow A< \frac{5}{4}:4=\frac{5}{16}\)
Lưu ý : \(M=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\Rightarrow5M=1+\frac{1}{5}+...+\frac{1}{5^9}\Rightarrow4M=5M-M=1-\frac{1}{5^{10}}\)
\(\Rightarrow M=\frac{1}{4}-\frac{1}{5^{10}}:4< \frac{1}{4}\)
\(\left(\frac{1}{5^2}+\frac{2}{5^3}+.....+\frac{11}{5^{12}}\right)\)
=\(\left(\frac{1}{5^2}+\frac{2}{5^3}+.....+\frac{11}{5^{12}}\right)\)<\(\frac{1}{4.5}+\frac{2}{4.5.6}+...+\frac{11}{4.5.6...15}\)
=???