cano xuất phát lúc 8h xuôi theo dòng nước có tốc độ là 15 km đến bến lúc 9h30.sau đó cano đợi khách 45p và quay về điểm xuất phát biết lúc này tốc độ của cano là 25km/h ( cho rằng lúc này tốc độ của dòng chảy là không đáng kể ) tính tổng quãng đường cano đi được là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Tổng thời gian đi lẫn về là: 11h30−7=4h30=4,511h30−7=4h30=4,5h
Gọi thời gian đi là xx (h) thì thời gian về là 4,5−x4,5−x (h)
Vận tốc cano xuôi dòng: ABx=36xABx=36x
Vận tốc cano ngược dòng: AB4,5−x=364,5−xAB4,5−x=364,5−x
Chênh lệch vận tốc xuôi dòng và ngược dòng bằng 2 lần vận tốc dòng nước, tức là:
36x−364,5−x=1236x−364,5−x=12
⇔3x−34,5−x=1⇔3x−34,5−x=1
⇒x2−10,5x+13,5=0⇒x2−10,5x+13,5=0
⇒x=9⇒x=9 hoặc x=1,5x=1,5. Hiển nhiên x<4,5x<4,5 nên x=1,5x=1,5
Vận tốc cano xuôi dòng là: 361,5=24361,5=24 (km/h)
Gọi x (km/h) là vận tốc của canô đi xuôi dòng điều kiện x >12. Khi đó
Vận tốc của canô khi nước lặng yên là: x – 6(km/h).
Vận tốc canô khi ngược dòng là: x – 12(km/h).
Thời gian canô xuôi dòng từ A đến B là \(\frac{36}{x}\) (giờ).
Thời gian canô ngược dòng từ B đến A là \(\frac{36}{x-12}\) (giờ).
Theo đề bài ta có: \(\frac{36}{x}+\frac{36}{x-12}=\frac{9}{2}\)
\(\Leftrightarrow\frac{4\left(x-12\right)+4x}{x\left(x-12\right)}=\frac{x\left(x-12\right)}{2x\left(x-12\right)}\)
\(\Leftrightarrow8\left(x-12+x\right)=x\left(x-12\right)\)
\(\Leftrightarrow\left(x-4\right)\left(x-24\right)=0\)
=> x = 0 hoặc x = 24
Vậy vận tốc của canô khi xuôi dòng là 24km/h
Giải
Gọi vận tốc thực của canô là x ( km/h ) ( x > 6 )
=>Vận tốc xuôi là: x+6(km/h) =>T/g=\(\frac{36}{x+6}\)(h)
Vận tốc ngược là: x-6(km/h) =>T/g=\(\frac{36}{x-6}\)(h)
T/g cả đi lẫn về là: 11h 30' - 7h = 4h 30'=\(\frac{9}{2}\)(h)
Ta có phương trình:
\(\frac{36}{x+6}+\)\(\frac{36}{x-6}=\frac{9}{2}\)
⇔72(x−6) + 72(x+6)= 9(x2−36)
⇔72x − 432 + 72x + 432 − 9x2 + 324 = 0
⇔9x2 − 144x − 324 = 0
⇔x2 − 16x − 36 = 0
⇔x2 + 2x − 18x − 36 = 0
⇔x(x+2) − 18(x+2) = 0
⇔(x+2)(x−18)=0
⇔x=18(vì x >6 )
=>Vận tốc của canô khi xuôi dòng là 24km/h
Hok Tốt !
# mui #
Gọi x (km/h) là vận tốc của ca nô
(x > 6)
x + 6 (km/h) là vận tốc của ca nô lúc xuôi dòng.
x - 6 (km/h) là vận tốc của ca nô lúc ngược dòng.
Thời gian ca nô đi từ A đến B lúc xuôi dòng là:
Thời gian ca nô đi từ A đến B lúc xuôi dòng là:
Tổng thời gian của ca nô cả đi và về là: 11h30 - 7h = 4,5h
x = 18 (thỏa điều kiện)
Vậy vận tốc thực của ca nô là 18 km/h
Gọi vận tốc cano khi nước yên lặng là x
Thời gian đi là 45/(x+3)
Thời gian về là 45/(x-3)
Theo đề, ta có: \(\dfrac{45}{x+3}+\dfrac{45}{x-3}=6,25\)
=>\(\dfrac{45x-135+45x+135}{x^2-9}=6,25\)
=>6,25x^2-56,25=90x
=>\(x=\dfrac{30+5\sqrt{42}}{4}\)
Tham khảo:
Gọi x (km/h) là vận tốc của ca nô khi xuôi dòng. Khi đó
Vận tốc của ca nô khi nước lặng yên là: x-6 (km/h)
Vận tốc của ca nô khi ngược dòng là: x-12 (km/h)
Ta thấy điều kiện của ẩn x>12 (vì vận tốc của ca nô khi ngược dòng phải lớn hơn 0)
Thời gian ca nô xuôi dòng từ A đến B là 36/x(giờ)
Thời gian ca nô ngược dòng từ B về A là 36/x-12 (giờ)
Tổng thời gian cả đi và về (từ 7 giờ sáng đến 11 giờ 30) là 4,5 giờ
Ta có phương trình:
36/x+36/x-12=9/2
<=> 4(x-12)+4x / x(x-12)= x(x-12) / 2x(x-12)
=> 8(x-12+x)=x(x-12)
<=>x(x-4)-24(x-4)=0
<=> (x-4)(x-24)=0
Phương trình này có 2 nghiệm là 4 và 24, nhưng chỉ có giá trị x=24 là thỏa mãn điều kiện của ẩn
Vậy vận tốc của ca nô khi xuôi dòng là 24km/h
hơi sai sai
Thế lm thất vọng ghê .3 ngày nữa thi r mà cứ lm lo sợ