10a+10c+b+5a+6c=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{ab+10b+25}{ab+5a+5b+25}+\dfrac{bc+10c+25}{bc+5b+5c+25}+\dfrac{ca+10a+25}{ac+5a+5c+25}\)
\(=\dfrac{\left(ab+5b\right)+\left(5b+25\right)}{\left(ab+5a\right)+\left(5b+25\right)}+\dfrac{\left(bc+5c\right)+\left(5c+25\right)}{\left(bc+5b\right)+\left(5c+25\right)}+\dfrac{\left(ca+5a\right)+\left(5a+25\right)}{\left(ac+5a\right)+\left(5c+25\right)}\)
\(=\dfrac{b\left(a+5\right)+5\left(b+5\right)}{a\left(b+5\right)+5\left(b+5\right)}+\dfrac{c\left(b+5\right)+5\left(c+5\right)}{b\left(c+5\right)+5\left(c+5\right)}+\dfrac{a\left(c+5\right)+5\left(a+5\right)}{a\left(c+5\right)+5\left(c+5\right)}\)
\(=\dfrac{b\left(a+5\right)+5\left(b+5\right)}{\left(a+5\right)\left(b+5\right)}+\dfrac{c\left(b+5\right)+5\left(c+5\right)}{\left(b+5\right)\left(c+5\right)}+\dfrac{a\left(c+5\right)+5\left(a+5\right)}{\left(a+5\right)\left(c+5\right)}\)
\(=\dfrac{b}{b+5}+\dfrac{5}{a+5}+\dfrac{c}{c+5}+\dfrac{5}{b+5}+\dfrac{a}{a+5}+\dfrac{5}{c+5}\)
\(=\left(\dfrac{b}{b+5}+\dfrac{5}{b+5}\right)+\left(\dfrac{a}{a+5}+\dfrac{5}{a+5}\right)+\left(\dfrac{c}{c+5}+\dfrac{5}{c+5}\right)\)
\(=1+1+1=3\) (\(a;b;c\ne-5\))
\(A=\dfrac{ab+5b+5b+25}{a\left(b+5\right)+5\left(b+5\right)}+\dfrac{bc+5c+5c+25}{b\left(c+5\right)+5\left(c+5\right)}+\dfrac{ca+5a+5a+25}{a\left(c+5\right)+5\left(c+5\right)}\)
\(A=\dfrac{b\left(a+5\right)+5\left(b+5\right)}{\left(a+5\right)\left(b+5\right)}+\dfrac{c\left(b+5\right)+5\left(c+5\right)}{\left(b+5\right)\left(c+5\right)}+\dfrac{a\left(c+5\right)+5\left(a+5\right)}{\left(a+5\right)\left(c+5\right)}\)
\(A=\dfrac{b}{b+5}+\dfrac{5}{a+5}+\dfrac{c}{c+5}+\dfrac{5}{b+5}+\dfrac{a}{a+5}+\dfrac{5}{c+5}\)
\(A=\dfrac{a+5}{a+5}+\dfrac{b+5}{b+5}+\dfrac{c+5}{c+5}=1+1+1=3\)
\(M=\sum\frac{ab}{\sqrt{\left(2a+3b\right)^2+\left(a-b\right)^2}}\le\sum\frac{ab}{\sqrt{\left(2a+3b\right)^2}}=\sum\frac{ab}{2a+3b}\)
\(\Rightarrow M\le\frac{1}{32}\sum ab\left(\frac{2}{a}+\frac{3}{b}\right)=\frac{1}{25}\sum\left(3a+2b\right)=\frac{1}{5}\left(a+b+c\right)\)
\(M\le\frac{1}{5}\sqrt{3\left(a^2+b^2+c^2\right)}=\frac{1}{5}.3=\frac{3}{5}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)
\(10a=15b=6c\)
\(\Rightarrow\frac{10a}{1}=\frac{5b}{\frac{1}{3}}=\frac{c}{\frac{1}{6}}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{10a}{1}=\frac{5b}{\frac{1}{3}}=\frac{c}{\frac{1}{6}}=\frac{10a-5b+c}{1-\frac{1}{3}+\frac{1}{6}}=\frac{25}{\frac{5}{6}}=30\)
\(\Rightarrow\hept{\begin{cases}a=30:10=3\\b=10:5=2\\c=30:6=5\end{cases}}\)
Vậy a = 3, b = 2, c = 5
#)Giải :
Ta có : \(10a=15b\Rightarrow\frac{a}{15}=\frac{b}{10}\Rightarrow\frac{a}{90}=\frac{b}{60}\)
\(15b=6c\Rightarrow\frac{b}{6}=\frac{c}{15}\Rightarrow\frac{b}{60}=\frac{c}{150}\)
\(\Rightarrow\frac{a}{90}=\frac{b}{60}=\frac{c}{150}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{a}{90}=\frac{b}{60}=\frac{c}{150}=\frac{10a-5b+c}{900-300+150}=\frac{25}{750}=\frac{1}{30}\)
\(\Rightarrow\frac{a}{90}=\frac{1}{30}\Rightarrow a=3\)
\(\Rightarrow\frac{b}{60}=\frac{1}{30}\Rightarrow b=2\)
\(\Rightarrow\frac{c}{150}=\frac{1}{30}\Rightarrow c=5\)
\(*B = -2a - 5b + 8a - 10b - 2b=6a -17b\\ *C=-3c+10a-2b+10c-2a-2b+7c=5a-4b+17c\)
10a+10c+b+5a+6c=15a+b+16c
chắc vậy
10a+10c+b+5a+6c
=(10a+5a)+(10c+6c)+b
=15a+16c+b
mình làm đúng nhớ cho mình nhé!