K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1, Cho hình chóp SABCD có đáy ABCD là hình vuông . Mặt bên SAB là tam giác đều nằm trong mặt phẳng vuông góc với (ABCD).CÓ mấy mặt phẳng vuông góc với (sab) 2, Cho hình chóp SABCD có đáy ABCD là hình thoi . Mặt phẳng (SAC) vuông góc (ABCD) . mệnh đề nào đúng A. (SAC) vuông góc (SBD)      b. (SBD) vuông góc (ABCD) C.(BCD) vuông góc (ACD)D.(SAB) vuông góc (SAD) 3, Cho tứ diện ABCD có AB=AC=AD và tam giác BCD vuông ở B . Trong các mặt phẳng sau , cặp...
Đọc tiếp

1, Cho hình chóp SABCD có đáy ABCD là hình vuông . Mặt bên SAB là tam giác đều nằm trong mặt phẳng vuông góc với (ABCD).CÓ mấy mặt phẳng vuông góc với (sab) 

2, Cho hình chóp SABCD có đáy ABCD là hình thoi . Mặt phẳng (SAC) vuông góc (ABCD) . mệnh đề nào đúng 

A. (SAC) vuông góc (SBD)      

b. (SBD) vuông góc (ABCD) 

C.(BCD) vuông góc (ACD)

D.(SAB) vuông góc (SAD) 

3, Cho tứ diện ABCD có AB=AC=AD và tam giác BCD vuông ở B . Trong các mặt phẳng sau , cặp nào vuông góc với nhau 

A.(ABC) và (ABD)                  B.(ABD) và (BCD) 

C. (BCD) và (ACD)                  D.(ACD) và (ABC)

4. tứ diện abcd có bcd là tam giác vuông ở b . (ABC) vuông góc (BCD) . các cạnh của tứ diện cạnh nào là đường cao 

5. Cho hình chóp SABC có đáy abc là tam giác vuông ở b với AB=3a,BC=4a. biết SA vuông góc với đáy , góc giữa (SBC) và (ABC)=60 ĐỘ . TÍNH diện tích tam giác sbc

0
6 tháng 12 2017

Phương pháp:

Công thức tính thể tích khối chóp có diện tích đáy S và chiều cao h là: V = 1 3 S h  

Cách giải:

16 tháng 10 2021

chịu mình mới học lớp 6

16 tháng 10 2021

tính VSABCD nhé các bạn ! -_-

15 tháng 10 2017

Gọi H là trung điểm của AB, suy ra A H ⊥ A B C D .

Gọi G là trọng tâm tam giác ∆SAB và O là tâm hình vuông ABCD.

Từ G kẻ GI//HO suy ra GI là trục đường tròn ngoại tiếp tam giác ∆SAB và từ O kẻ OI//SH thì OI là trục đường tròn ngoại tiếp hình vuông ABCD.

Ta có hai đường này cùng nằm trong mặt phẳng và cắt nhau tại I.

Suy ra I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD.

R = S I = S G 2 + G I 2 = a 21 6 .

Suy ra thể tích khối cầu ngoại tiếp khối chóp S.ABCD là  V = 4 3 π R 3 = 7 21 54 π a 3

Đáp án A

23 tháng 3 2019

1 tháng 7 2017

Đáp án A

                                     

          Gọi H  là trung điểm  A B .

          Ta có  S A B ⊥ A B C D S A B ∩ A B C D = A B S H ⊂ S A B ; S H ⊥ A B ⇒ S H ⊥ A B C D .

          Khi đó:  V S . A B C D = 1 3 S H . S A B C D = 1 3 . a 3 2 . a 2 = a 3 3 6 .

18 tháng 4 2019

2 tháng 12 2018

Chọn B

Ta có:

Do tam giác SAB đều =>  SM vuông góc với AB

Mà (SAB) vuông góc với mặt phẳng đáy => SM chính là đường cao của khối chóp SABCD

Mà SM vuông góc với NC ( Do SM vuông góc với đáy ABCD)

=> NC vuông góc với (SMD)

=> SI vuông góc với NC

20 tháng 11 2018

Đáp án D 

Gọi H,M lần lượt là trung điểm của AB và CD

Vì Δ S A B  đều và mặt phẳng S A B ⊥ A B C D ⇒ S H ⊥ A B C D   .

Ta có

C D ⊥ H M C D ⊥ S H ⇒ C D ⊥ S H M     (1)

Gọi I là hình chiếu vuông góc của H  lên mặt phẳng   S C D (2) 

Từ (1) và (2) suy ra   H I ⊥ S C D

  Vì  A B // C D ⇒ A B // S C D ⇒ d A , S C D = d H , S C D = H I = 3 a 7 7

Giải sử A B = x    x > 0 ⇒ S H = x 3 2 H M = x   .

Mặt khác: 1 H I 2 = 1 H M 2 + 1 S H 2   ⇔ 7 9 a 2 = 1 x 2 + 4 3 x 2 ⇔ x 2 = 3 a 2 ⇒ x = 3 a  

 

Thể tích:   V S . A B C D = 1 3 S H . S A B C D = 1 3 . 3 a 2 .3 a 2 = 3 a 3 2  (đvtt)