K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

=(1-2)(1+2)+(3-4)(3+4)+...+(99-100)(99+100)+101^2

=101^2-(1+2+3+...+99+100)

=101^2-100*101/2=5151

Bài 1 :

a) Gọi 3 số nguyên liên tiếp là :\(n-1,n,n+1\)

\(\left(n-1\right)+n+\left(n+1\right)=3n\)chia hết cho 3

Gọi năm số nguyên liên tiếp là \(n-2,n-1,n,n+1,n+2\).Ta có :

\(\left(n+2\right)+\left(n-1\right)+n+\left(n+1\right)+\left(n+2\right)=5n\)chia hết cho 5 

b) Gọi 2 số nguyên liên tiếp là \(n,n+1\): Ta có 

\(n+\left(n+1\right)=2n+1\)

Vì \(2n⋮2,\)\(1\)không chia hết cho \(2\)nên \(2n+1\)không chia hết cho 2 

Vậy tổng hai số nguyên liên tiếp không chia hết cho 2

Gọi 4 số nguyên liên tiếp là ;\(n-1,n,n+1,n+2\).Ta có :

\(\left(n-1\right)+n+\left(n+1\right)+\left(n+2\right)=4n+2\)

Vì \(4n⋮4,\)2 không chia hết cho 4  nên \(4n+2\)không chia hết cho 4

Nhận xét : Tổng của k só nguyên liên tiếp chia hết cho k khi và chỉ khi k lẻ

Chúc bạn học tốt ( -_- )

22 tháng 2 2020

a)Gọi ba số nguyên liên tiếp là a, a+1, a+2
ta có cấc+a+1+a+2=3a+3 
vì 3a chia hết cho 3
3 chia hết cho 3
nên tổng của 3 số nguyên liên tiếp thì chia hết cho 3
b)Gọi 5 số nguyên liên tiếp là a,a+1,a+2.a+3.a+4
ta có:a+a+1+a+2+a+3+a+4=10a+5 chia hết cho 5

chúc bạn học tốt !!!

9 tháng 1 2016

Câu  1: a) Gọi 3 số đó là a ;a+1;a+2

Ta có: a+a+1+a+2=3a+3 

3 chia hết cho 3 => 3a chia hết cho 3

=> 3a+3  chia hết cho 3 

=> Tổng của 3 số tự nhiên liên tiếp luon chia hết cho 3 

b) Gọi 5 số đó là a;a+1;a+2;a+3;a+4 

Ta có: a+a+1+a+2+a+3+a+4 =5a+5 

5 chia hết cho 5 => 5a chia hết cho 5 

=> Tổng của 5 số tự  nhiên liên tiếp luôn chia hết cho 5 

Câu 2 :Tụ làm nhé , mk chịu lun à 

11 tháng 2 2017

1/ Gọi 3 số nguyên liên tiếp đó là a; a + 1; a + 2

Trong 3 số nguyên liên tiếp có ít nhất 1 số chia hết cho 3, ta cho số đó là a

Ta có: a + a + 1 + a + 2 = a + a + a + 1 + 2 = 3a + 3

mà 3a và 3 chia hết cho 3

=> Tổng 3 số nguyên liên tiếp chia hết cho 3 (điều cần chứng minh)

22 tháng 1 2020

C)gọi 3 số nguyên liên tiếp lần lượt là a, a+1 ,a+2

ta có: 

a+(a+1)+(a+2)

=3a+3

=3(a+1) => chia hết cho 3 

22 tháng 1 2020

d) Gọi 5 số nguyên liên tiếp ần lượt là a, a+1, a+2, a+3, a+4 

Ta có: a + a+1 + a+2 +a+3 +a+4

         =5a +10

        =5(a+2) => chi hết cho 5

17 tháng 10 2020

a) +) Nếu 2 số đó cùng chẵn \(\Rightarrow\)cả 2 số đó đều \(⋮2\)\(\Rightarrow\)Tổng \(⋮2\)(1)

+) Nếu 2 số đó cùng lẻ

Gọi 2 số lẻ lần lượt là \(2a+1\)và \(2b+1\)\(a,b\inℕ\))

Ta có: \(\left(2a+1\right)+\left(2b+1\right)=4b+2=2\left(2b+1\right)⋮2\)(2)

Từ (1) và (2) \(\Rightarrowđpcm\)

b) Gọi 3 số tự nhiên liên tiếp là \(a\)\(a+1\)\(a+2\)\(a\inℕ\))

Ta có: \(a+\left(a+1\right)+\left(a+2\right)=3a+3=3\left(a+1\right)⋮3\)

\(\Rightarrowđpcm\)

4 tháng 12 2021

ousbdl

jvdajnvjl

nsdg

ouhqer

kgkrebvjdsjb

vq

wjkgb

Fbovafbeuonasf

24 tháng 1 2020

1)

a)

Gọi 3 STN liên tiếp là a;a+1;a+2

Ta có:a+(a+1)+(a+2) 

=3a+3 

=3(a+1) chia hết cho 3

=>ĐPCM

2)

a)3n chia hết cho n-1

Ta có 3n=3n-3+3

               =3(n-1)+3

Vì 3(n-1) chia hết cho (n-1)

Để [3(n-1)+3] chia hết cho (n-1)<=>3 chia hết cho (n-1)<=> (n-1) thuộc Ư(3)

Ta có Ư(3)={1;3;-1;-3}

+n-1=-3=>n=-2

+n-1=-1=>n=0

+n-1=1=>n=2

+n-1=3=>n=4

Vậy n thuộc{0;2;-2;4} thì 3n chia hết cho (n-1)

Những câu dưới tương tự

19 tháng 2 2020

*Mình chỉ làm mẫu vài bài thôi nhé!! Chứ mình lười lắm!!* 😊

1) 

a,

Gọi 3 số nguyên liên tiếp là k;k+1;k+2(k thuộc Z)

Tổng của 3 số nguyên đó là:

k+(k+1)+(k+2)=k+k+1+k+2=3k+3=3(k+1)

Mà 3(k+1) chia hết cho 3 => (đpcm)

2)

a,    3n chia hết cho n-1

=>  (3n-3)+3 chia hết cho n-1

=> [3(n-1)]+3 chia hết cho n-1

Vì n-1 chia hết cho n-1

Nên 3(n-1) chia hết cho n-1

=> 3 chia hết cho n-1

Hay n-1 thuộc Ư(3)={1;-1;3;-3}

Do đó: n thuộc {2;0;4;-2}

b, Để 2n+7 là bội của n-3 thì:

       2n+7 chia hết cho n-3

=> (2n-6)+13 chia hết cho n-3

=> [2(n-3)]+13 chia hết cho n-3

Vì n-3 chia hết cho n-3 

Nên 2(n-3) chia hết cho n-3

=> 13 chia hết cho n-3

Hay n-3 thuộc Ư(13)={1;-1;13;-13}

Do đó: n thuộc {4;2;16;-10}

c, Để n+2 là ước của 5n-1 thì:

      5n-1 chia hết cho n+2

=> (5n+10)-11 chia hết cho n+2

=> [5(n+2)]-11 chia hết cho n+2

Vì n+2 chia hết cho n+2

Nên 5(n+2) chia hết cho n+2

=> 11 chia hết cho n+2

Hay n+2 thuộc Ư(11)={1;-1;11;-11}

Do đó: n thuộc {-1;-3;9;-13}

3) Gọi 2 số nguyên cần tìm là x và y(x,y thuộc Z)

Theo đề, ta có:

xy=x-y => xy-(x-y)=0 => xy-x+y=0

=> x(y-1)+y=0 => x(y-1)+y-1=-1

=> (x+1)(y-1)=-1 

Mặt khác: -1=(-1).1=1.(-1)

~Rồi bạn xét hai trường hợp nhé!!

*Đúng nhớ tk giúp 😊*