Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O ( AB<AC) . Vẽ 2 đường cao AD và CE của tam giác ABC . Tiếp tuyến tại A của (O) cắt BC tại M . Từ M kẻ tiếp tuyến thứ hai đến (O) ( N là tiếp điểm ) . Vẽ CK vuông góc với AN tại K . Chứng minh : DK đi qua trung điểm của đoạn thẳng BE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc BEH+góc BFH=90 độ
=>BEHF nội tiếp
b: góc ABK=1/2*sđ cung AK=90 độ
Xét ΔABK vuông tại B và ΔAFC vuông tại F có
góc AKB=góc ACF
=>ΔABK đồng dạng với ΔAFC
\(\widehat{\text{AFB}}=\widehat{ADB}=90^0\)
Mà ÀB và ADB là hai góc kề cùng nhìn AB dưới hai góc bằng nhau => ÀDB nội tiếp
b) ta có \(\widehat{ACB}=\widehat{AEB}\)( cùng chắn cung AB)
\(\widehat{DFC}=\widehat{BAF}\)( trong tứ giác nội tiếp góc ngaoif tại một đỉnh bằng góc trong đỉnh còn lại )
\(\Rightarrow\widehat{ACB}+\widehat{FDC}=\widehat{BAF}+\widehat{BAE}=90^0\)
\(\Rightarrow DF\perp CA\)
a)
xét tứ giác AEHF có :
AEH = 900 (BE là đường cao của B trên AC )
AFH = 900 (CF là dường cao của C trên AB )
ta có ; AEH + AFH = 1800 mà 2 góc này ở vị trí đối nhau
==> tứ giác AEHF nội tiếp
xét tứ AEDB có :
AEB = 900 (BE là dường cao của B trên AC )
ADB = 900 (AD là đường cao của A trên BD )
mà 2 góc này cùa nhìn cạnh AB dưới một góc vuông
==> tứ giác AEDB nội tiếp
câu b vì mình ko hiểu đường cao của đường tròn là gì :/
a) Xét tứ giác KEDC có
\(\widehat{KEC}\) và \(\widehat{KDC}\) là hai góc đối
\(\widehat{KEC}+\widehat{KDC}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: KEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Tâm của đường tròn này là trung điểm của KC