tính:
a, \(\dfrac{x+1}{x-2}+\dfrac{x-2}{x+1}+\dfrac{14-x}{4-x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2x+4}{x^3-1}-\dfrac{2}{x-1}+\dfrac{x+2}{x^2+x+1}\\ =\dfrac{2x+4}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{2}{x-1}+\dfrac{x+2}{x^2+x+1}\\ =\dfrac{2x+4}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\\ =\dfrac{2x+4-2x^2-2x-2+x^2-x+2x-2}{\left(x-1\right)\left(x^2+x+1\right)}\\ =\dfrac{-x^2+x}{\left(x-1\right)\left(x^2+x+1\right)}\\ =\dfrac{-x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=-\dfrac{x}{x^2+x+1}\)
`a, 2/(x+1)` hay `2/(x-1)` cậu nhỉ?
`b,`
\(\dfrac{x-1}{x^2-5x+6}-\dfrac{x-3}{x-2}+\dfrac{x-2}{x-3}\\ =\dfrac{x-1}{\left(x-2\right)\left(x-3\right)}-\dfrac{x-3}{x-2}+\dfrac{x-2}{x-3}\\ =\dfrac{x-1}{\left(x-2\right)\left(x-3\right)}-\dfrac{\left(x-3\right)^2}{\left(x-2\right)\left(x-3\right)}+\dfrac{\left(x-2\right)^2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{x-1-\left(x^2-6x+9\right)+x^2-4x+4}{\left(x-2\right)\left(x-3\right)}\\ =\dfrac{x-1-x^2+6x-9+x^2-4x+4}{\left(x-2\right)\left(x-3\right)}\\ =\dfrac{3x-6}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{3\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\\ =\dfrac{3}{x-3}\)
a) \(\dfrac{1}{2}x(6x - 4) = \dfrac{1}{2}x.6x + \dfrac{1}{2}x.( - 4) = 3{x^2} - 2x\).
b) \(\begin{array}{l} - {x^2}(\dfrac{1}{3}{x^2} - x - \dfrac{1}{4}) = - {x^2}.\dfrac{1}{3}{x^2} + - {x^2}. - x + - {x^2}. - \dfrac{1}{4}\\ = - \dfrac{1}{3}{x^4} + {x^3} + \dfrac{1}{4}{x^2}\end{array}\)
\(a,=\dfrac{2\left(2x^2+1\right).\left(3x+2\right).2\left(2-x\right)}{\left(x-2\right)\left(x-4\right)\left(2x^2+1\right)}=\dfrac{-4.\left(3x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-4\right)}=\dfrac{-4\left(3x+2\right)}{x-4}\\ b,=\dfrac{\left(x+3\right).\left(x+2\right)}{x.\left(x+3\right)^2}\times\dfrac{x\left(x+3\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x+3\right)\left(x+2\right)x\left(x+3\right)}{x.\left(x+3\right)^2.\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x-2}\)
a) \(\dfrac{x^2-2x+1-x^2-2x-1+4}{\left(x+1\right)\left(x-1\right)}=\dfrac{-4\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{-4}{x+1}\)
\(\dfrac{xy\left(x^2+y^2\right)}{xy\left(x^3\right)}.\dfrac{1}{x^2+y^2}=\dfrac{1}{x^3}\)
a) Ta có: \(\dfrac{9-3x}{x^2+3x+4}-\dfrac{3x-23}{\left(1-x\right)\left(x+4\right)}\)
\(=\dfrac{9-3x}{x^2+3x+4}+\dfrac{3x-23}{x^2+3x-4}\)
\(=\dfrac{\left(9-3x\right)\left(x^2+3x-4\right)}{\left(x^2+3x+4\right)\left(x^2+3x-4\right)}+\dfrac{\left(3x-23\right)\left(x^2+3x+4\right)}{\left(x^2+3x-4\right)\left(x^2+3x+4\right)}\)
\(=\dfrac{9x^2+27x-36-3x^3-9x^2+12x+3x^3+9x^2+12x-23x^2-69x-92}{\left(x^2+3x-4\right)\left(x^2+3x+4\right)}\)
\(=\dfrac{-14x^2-18x-128}{\left(x^2+3x-4\right)\left(x^2+3x+4\right)}\)
b) Ta có: \(\dfrac{4-x}{x^3+2x}-\dfrac{x+5}{x^3-x^2+2x-2}\)
\(=\dfrac{4-x}{x\left(x^2+2\right)}-\dfrac{x+5}{x^2\left(x-1\right)+2\left(x-1\right)}\)
\(=\dfrac{4-x}{x\left(x^2+2\right)}-\dfrac{x+5}{\left(x-1\right)\left(x^2+2\right)}\)
\(=\dfrac{\left(4-x\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+2\right)}-\dfrac{x\left(x+5\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\dfrac{4x-4-x^2+x-x^2-5x}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\dfrac{-2x^2-4}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\dfrac{-2\left(x^2+2\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\dfrac{-2}{x\left(x-1\right)}\)
a: \(=\dfrac{2x-2x+y}{2\left(2x-y\right)}=\dfrac{y}{2\left(2x-y\right)}\)
b: \(=\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{6x+2-x^2-x}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x^2+5x+2}{2\left(x-1\right)\left(x+1\right)}\)
c: \(=\dfrac{1}{x+2}+\dfrac{x+8}{3x\left(x+2\right)}\)
\(=\dfrac{3x+x+8}{3x\left(x+2\right)}=\dfrac{4x+8}{3x\left(x+2\right)}=\dfrac{4}{3x}\)
d: \(=\dfrac{4x+6-2x^2+3x+2x+1}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\dfrac{-2x^2+9x+7}{\left(2x-3\right)\left(2x+3\right)}\)
\(a,=\left(\dfrac{1-x}{x}+\dfrac{x^3-x}{x}\right)\times\dfrac{x}{x-1}\\ =\dfrac{1-x+x^3-x}{x}\times\dfrac{x}{x-1}\\ =\dfrac{1-2x+x^3}{x-1}\\ b,=\left(\dfrac{x-x^2}{x.x^2}\right).\dfrac{x^2}{y}+\dfrac{x}{y}\\ =\dfrac{x-x^2}{xy}+\dfrac{x}{y}\\ =\dfrac{x-x^2+x^2}{xy}=\dfrac{x}{xy}=\dfrac{1}{y}\)
\(c,=\dfrac{3}{x}-\dfrac{2}{x}\times x+\dfrac{x}{3}\\ =\dfrac{3}{x}-2+\dfrac{x}{3}\\ =\dfrac{3-2x+x^2}{3x}\)
a: \(=\left(x+2\right)^2\cdot\dfrac{2x-1}{3\left(x+2\right)}=\dfrac{\left(x+2\right)\left(2x-1\right)}{3}\)
b: \(=\dfrac{2\left(x+1\right)}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-\left(x-2\right)}{x\left(x-1\right)}=\dfrac{-2\left(x+1\right)}{\left(x-1\right)\left(x+2\right)}\)
a)
\(\dfrac{1}{2}{x^2}.\dfrac{6}{5}{x^3} = \dfrac{1}{2}.\dfrac{6}{5}.{x^2}.{x^3} = \dfrac{3}{5}{x^5}\);
b)
\(\begin{array}{l}{y^2}(\dfrac{5}{7}{y^3} - 2{y^2} + 0,25) = {y^2}.\dfrac{5}{7}{y^3} - {y^2}.2{y^2} + {y^2}.0,25)\\ = \dfrac{5}{7}{y^5} - 2{y^4} + 0,25{y^2}\end{array}\);
c)
\(\begin{array}{l}(2{x^2} + x + 4)({x^2} - x - 1) \\= 2{x^2}({x^2} - x - 1) + x({x^2} - x - 1) + 4({x^2} - x - 1)\\ = 2{x^4} - 2{x^3} - 2{x^2} + {x^3} - {x^2} - x + 4{x^2} - 4x - 4 \\= 2{x^4} - {x^3} + {x^2} - 5x - 4\end{array}\);
d)
\(\begin{array}{l}(3x - 4)(2x + 1) - (x - 2)(6x + 3) \\= 3x(2x + 1) - 4(2x + 1) - x(6x + 3) + 2(6x + 3)\\ = 6{x^2} + 3x - 8x - 4 - 6{x^2} - 3x + 12x + 6\\ = 4x + 2\end{array}\).
\(=\dfrac{x^2+2x+1+x^2-4x+4+x-14}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x^2-x-9}{\left(x-2\right)\left(x+2\right)}\)