K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6.1:

Xét (O) có

MA,MB là tiếp tuyến

nên MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc với AB

Xét ΔOAM vuông tại A có AH là đường cao

nên OH*OM=OA^2

=>OH*8=4^2=16

=>OH=2cm

Xét ΔAMO vuông tại A có sin AMO=AO/OM=1/2

nên góc AMO=30 độ

6.2:

Xét ΔMAB có MA=MB và góc AMB=60 độ

nên ΔMAB đều

6.3:

Xét tứ giác AHIM có

góc AHM=góc AIM=90 độ

nên AHIM là tứ giác nội tiếp

12 tháng 12 2023

a: Xét ΔAOM vuông tại A có \(AM^2+AO^2=OM^2\)

=>\(AM^2=5^2-3^2=16\)

=>\(AM=\sqrt{16}=4\left(cm\right)\)

Xét ΔAOM vuông tại A có \(tanAMO=\dfrac{AO}{AM}\)

=>\(tanAMO=\dfrac{3}{4}\)

b: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là trung trực của AB

=>MO\(\perp\)AB tại I và I là trung điểm của AB

c: Xét (O) có

ΔBDC nội tiếp

BC là đườngkính

Do đó: ΔBDC vuông tại D

=>BD\(\perp\)DC tại D

=>BD\(\perp\)CM tại D

Xét ΔCBM vuông tại B có BD là đường cao

nên \(MD\cdot MC=MB^2\left(3\right)\)

Xét ΔMBO vuông tại B có BI là đường cao

nên \(MI\cdot MO=MB^2\left(4\right)\)

Từ (3) và (4) suy ra \(MD\cdot MC=MI\cdot MO\)

=>\(\dfrac{MD}{MI}=\dfrac{MO}{MC}\)

Xét ΔMDO và ΔMIC có

\(\dfrac{MD}{MI}=\dfrac{MO}{MC}\)

\(\widehat{DMO}\) chung

Do đó: ΔMDO đồng dạng với ΔMIC