cho tam giác ABC vuông tại A có AB=1,AC= căn 2.Gọi d là đường thẳng qua A và song song BC,điểm M di động trên d.Tìm minP=MA+MB+2MC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=căn 12^2+15^2=3*căn 41(cm)
AB<AC
=>góc B>góc C
b: Xét ΔMBD có
MA vừa là đường cao, vừa là trung tuyến
=>ΔMBD cân tại M
=>MB=MD
c: Xét ΔCDB có
A là trung điểm của DB
AN//BC
=>N là trung điểm của CD
Xét ΔCDB có
CA là trung tuyến
CM=2/3CA
=>M là trọng tâm
=>B,M,N thẳng hàng
a) Xét ΔCBM và ΔADM có:
AM=MC (giả thtết)
gócCMB=gócAMD ( đối đỉnh)
BM=MD (giả thiết)
⇒ ΔCBM=ΔADM (c.g.c)
BC=DA (hai cạnh tương ứng)
b) Xét ΔABM và ΔCDM có:
AM=CM (giả thiết)
gócAMB=gócCMD(đối đỉnh)
BM=DM (giả thiết)
⇒ ΔABM=ΔCDM (c.g.c)
gócBAM=gócDCM=90độ (hai góc tương ứng) (đpcm)
⇒ DC⊥AC (đpcm)
c) Ta có BN//AC mà AC⊥DC
⇒ BN⊥DC ⇒gócBND=90độ
AB//CD (do cùng ⊥AC)
Xét ΔABC và ΔNBC có:
gócABC=gócNCB (hai góc ở vị trí so le trong)
BC chung
gócACB=gócNBC (do BN//AC nên đó là hai góc ở vị trí so le trong)
⇒ ΔABC=ΔNBC (g.c.g)
⇒ AB=NC (hai cạnh tương ứng)
Xét ΔABM và ΔCNM có:
AB=CN (cmt)
góc BAM=gócNCM=90độ
góc BAM= gócNCM=90độ
AM=CM (giả thiết)
⇒ ΔABM=ΔCNM (đpcm)
a: Xét ΔCBD co
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBD cân tại C
b: Xét ΔMDE và ΔMCB có
góc MDE=góc MCB
MD=MC
góc DME=góc CMB
=>ΔMDE=ΔMCB
=>DE=BC
=>BC+BD=ED+BD>EB
Mk thấy đề sai hay sao ý ko có đường thẳng nào đi qua B song song vs CD và cắt DM cả
mik thấy cô ghi đè s mik ghi lại y chang chứ mik ko bik j cả. mik đọc cx thấy sai sai cái j á mà ko bik mik đọc đè đúng hay là sai nên mik mới đăng
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
MN//BC
Do đó: N là trung điểm của AC
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Bài 2:
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay AC=12(cm)
b: Xét ΔABC có
MN//AC
nên \(\dfrac{MN}{AC}=\dfrac{BM}{AB}\)
hay MN=6(cm)