Cho hình bình hành ABCD có AD = 2AB, góc A = 600. Gọi E, F lần lượt là trung điểm của BC và AD
a) Chứng minh AE⊥BF
b) Chứng minh tứ giác BFDC là hình thang cân
c) Lấy điểm M đối xứng với A qua B. Chứng minh tứ giác BMCD là hình chữ nhật. Từ đó suy ra 3 điểm M,E,D thẳng hàng
Giải chi tiết hộ mk ạ, cần gấp lắm
a: Xét tứ giác ABEF có
BE//AF
BE=AF
BE=BA
Do đó; ABEFlà hình thoi
=>AE vuông góc với BF
b: Xét ΔABF có AB=AF và góc FAB=60 độ
nên ΔABF đều
=>góc BFD=120 độ=góc CDF
Xét tứ giác BCDF có
BC//DF
góc BFD=góc D=120 độ
Do đó: BCDF là hình thang cân
c: Xét ΔBAD có
BF là trung tuyến
BF=AD/2
Do đó ΔBAD vuông tại B
=>góc MBD=90 độ
Xét tứ giác BMCD co
BM//CD
BM=CD
góc MBD=90 độ
Do đó; BMCD là hình chữ nhật
=>BC cắt MD tại trung điểm của mỗi đường
=>M,E,D thẳng hàng