Cho tam giác ABC cân tại A (AB = AC). Gọi M,N ∈ BC sao cho MAN < BAC 2 . a) Ở phía ngoài tam giác ABC, vẽ tam giác AP C sao cho AM = AP và BM = P C. Chứng minh rằng ∆BAM = ∆CAP. Từ đó, hãy chứng tỏ MAN < NAP . b) Trong nửa mặt phẳng bờ AN chứa P, lấy điểm Q sao cho AM = AQ và MAN = QAN ". Chứng minh rằng ∆MAN = ∆QAN và NP > NQ. Từ đó, hãy chứng tỏ MN < NP. c) Chứng minh rằng MN < BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔADM có
AB=AD
góc BAM=góc DAM
AM chung
Do đó: ΔABM=ΔADM
SUy ra: MB=MD
b: Xét ΔDAK và ΔBAC có
góc ADK=góc ABC
AD=AB
góc DAK chung
Do đó: ΔDAK=ΔBAC
c: Xét ΔAKC có AK=AC
nên ΔAKC cân tại A
d: Xét ΔABC có AM là phân giác
nên BM/AB=CM/AC
mà AB<AC
nên BM<CM
Bạn tìm bài này theo đường link này nha!
https://olm.vn/hoi-dap/question/36403.html
chúc bạn may mắn
a) Xét tam giác ABM và tam giác ACN:
Góc A chung
AB = AC (do tam giác ABC cân tại A)
AM = AN (gt)
Suy ra: tam giác ABM = tam giác ACN (c g c)
b) Xét tam giác AMN có :
AM =AN (gt)
Suy ra: tam giác AMN cân tại A
Suy ra góc ANM = \(\dfrac{\text{180 - góc A}}{2}\)
mà góc ABC = \(\dfrac{\text{180 - góc A}}{2}\) ( do tam giác ABC cân tại A)
Suy ra: góc ANM = góc ABC
Mà 2 góc này ở vị trí đồng vị của MN và BC
Suy ra MN song song BC
Trả lời:
Tam giác AIM = tam giác CIM ( ch-chg)
nên MA=MC. tam giác AMC cân tại đỉnh M. Tam giác MAC và tam giác ABC là tam giác cân lại có chung gióc C nên góc ở đỉnh của chúng bằng nhau
Vậy góc AMC = góc BAC.
Ta có : ABMˆ+ABCˆ=180ABM^+ABC^=180 và CANˆ+CAMˆ=180CAN^+CAM^=180 ( vì cùng kề bù)
do đó: góc ABM = góc CAM.
Vậy tam giác ABM= tam giác CAN (c.g.c)
=> CN=AM mà AM=CM nên suy ra CM=CN. Tam giác MCN cân tại C
Tam giác ABC cân tại A có góc BAC =45
=> ACBˆ=180−452=67o30′ACB^=180−452=67o30′
Mà ACBˆ=MACˆACB^=MAC^ nên MABˆ=67o30′
Khi đó MABˆ=MACˆ−BACˆ=67o30′−450=22o30′MAB^=MAC^−BAC^=67o30′−450=22o30′
⇒ACNˆ=22030′⇒ACN^=22o30′
MCNˆ=MCAˆ+ACMˆ=67030′+22o30′=90oMCN^=MCA^+ACM^=67o30′+22o30′=90o
\(\Rightarrow\)Tam giác CMN vuông cân ở C
~Học tốt!~
a: Xét ΔBAM và ΔCAP có
BM=CP
BA=CA
AM=AP
=>ΔBAM=ΔCAP
=>góc BAM=góc CAP
=>góc BAM+góc MAN=góc CAP+góc MAN
=>góc MAN<góc NAP
b: Xét ΔMAN và ΔQAN co
AM=AQ
góc MAN=góc QAN
AN chung
=>ΔMAN=ΔQAN
=>NM=NQ
mà NP>NM
nên NP>NQ