K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 12 2022

Lời giải:

a. ĐKXĐ: $x\in\mathbb{R}$

$\sqrt{4(x+2)^2}=8$

$\Leftrightarrow 2\sqrt{(x+2)^2}=8$

$\Leftrightarrow \sqrt{(x+2)^2}=4$

$\Leftrightarrow |x+2|=4\Rightarrow x+2=\pm 4$

$\Rightarrow x=2$ hoặc $x=-6$ (đều thỏa mãn)

b. ĐKXĐ: $x\in\mathbb{R}$

PT \(\sqrt{(x-3)^2}=3-x\Leftrightarrow |x-3|=3-x\Leftrightarrow 3-x\geq 0\Leftrightarrow x\leq 3\)

 

7 tháng 4 2021

a, Đặt \(\sqrt[3]{81x-8}=3y-2\Leftrightarrow9x=3y^3-6y^2+4y\left(1\right)\)

Phương trình tương đương: \(3y-2=x^3-2x^2+\dfrac{4}{3}x-2\)

\(\Leftrightarrow9y=3x^3-6x^2+4x\)

Ta có hệ: \(\left\{{}\begin{matrix}9x=3y^3-6y^2+4y\\9y=3x^3-6x^2+4x\end{matrix}\right.\)

\(\Rightarrow\left(x-y\right)\left(3x^2+3y^2+3xy-6x-6y+13\right)=0\)

Vì \(3x^2+3y^2+3xy-6x-6y+13\)

\(=\dfrac{1}{2}\left[3\left(x+y\right)^2+3\left(x-2\right)^2+3\left(y-2\right)^2+2\right]>0\) nên \(x=y\)

Khi đó: \(\left(1\right)\Leftrightarrow3x^3-6x^2-5x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3\pm2\sqrt{6}}{3}\end{matrix}\right.\)

Thử lại ta được \(x=0;x=\dfrac{3\pm2\sqrt{6}}{3}\) là các nghiệm của phương trình.

NV
28 tháng 3 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x^2+y^2\right)+\left(x^2+y^2-4\right)\left(y+2\right)=0\\x^2+y^2+\left(x+y-2\right)\left(y+2\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x^2+y^2-4\right)\left(y+2\right)=-x\left(x^2+y^2\right)\\-\left(x^2+y^2\right)=\left(x+y-2\right)\left(y+2\right)\end{matrix}\right.\)

\(\Rightarrow\left(x^2+y^2-4\right)\left(y+2\right)=x\left(x+y-2\right)\left(y+2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}y+2=0\left(\text{không thỏa mãn}\right)\\x^2+y^2-4=x\left(x+y-2\right)\end{matrix}\right.\) 

\(\Rightarrow x^2+y^2-4=x^2+x\left(y-2\right)\)

\(\Leftrightarrow\left(y+2\right)\left(y-2\right)=x\left(y-2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2\\x=y+2\end{matrix}\right.\)

Thế vào pt dưới:

\(\Rightarrow\left[{}\begin{matrix}x^2+8+2x+2x-4=0\\\left(y+2\right)^2+2y^2+y\left(y+2\right)+2\left(y+2\right)-4=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Câu b chắc chắn đề sai, nhìn 2 vế pt đầu đều có \(x^2\) thì chúng sẽ rút gọn, không ai cho đề như thế hết

28 tháng 3 2021

Mk sửa lại đề rồi. Bạn giúp mk giải vs

9 tháng 9 2021

a) \(\sqrt{\left(x-3\right)^2}=2\Leftrightarrow\left|x-3\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

b) \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\left(đk:x\ge-2\right)\)

\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)

\(\Leftrightarrow2\sqrt{x+2}=6\Leftrightarrow\sqrt{x+2}=3\Leftrightarrow x+2=9\Leftrightarrow x=7\)

a: \(\sqrt{\left(x-3\right)^2}=2\)

\(\Leftrightarrow\left|x-3\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

b: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)

\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)

\(\Leftrightarrow x+2=9\)

hay x=7

11 tháng 7 2021

a) \(\left|sinx-cosx\right|+\left|sinx+cosx\right|=2\)

\(\Leftrightarrow\left(sinx-cosx\right)^2+2\left|sinx-cosx\right|\left|sinx+cosx\right|+\left(cosx+sinx\right)^2=4\)

\(\Leftrightarrow2\left(sin^2x+cos^2x\right)+2\left|\left(sinx-cosx\right)\left(sinx+cosx\right)\right|=4\)

\(\Leftrightarrow\left|sin^2x-cos^2x\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}sin^2x-cos^2x=1\\sin^2x-cos^2x=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}sin^2x-cos^2x=sin^2x+cos^2x\\sin^2x-cos^2x=-\left(sin^2x+cos^2x\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}cos^2x=0\\sin^2x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=0\end{matrix}\right.\)\(\Rightarrow cosx.sinx=0\Rightarrow sin2x=0\)

\(\Rightarrow x=\dfrac{k\pi}{2},k\in Z\)

Vậy...

b) ĐK:\(x\ne\dfrac{k\pi}{2};k\in Z\)

Pt \(\Leftrightarrow\dfrac{sinx}{cosx}-\dfrac{3cosx}{sinx}=4\left(sinx+\sqrt{3}cosx\right)\)

\(\Leftrightarrow\dfrac{sin^2x-3cos^2x}{cosx.sinx}=4\left(sinx+\sqrt{3}cosx\right)\)

\(\Leftrightarrow\dfrac{\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}cosx\right)}{sinx.cosx}=4\left(sinx+\sqrt{3}cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+\sqrt{3}cosx=0\left(1\right)\\\dfrac{sinx-\sqrt{3}cosx}{sinx.cosx}=4\left(2\right)\end{matrix}\right.\)

Từ \(\left(1\right)\Leftrightarrow tanx=-\sqrt{3}\Leftrightarrow x=-\dfrac{\pi}{3}+k\pi,k\in Z\)

Từ (2)\(\Leftrightarrow sinx-\sqrt{3}cosx=4sinx.cosx\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=2sinx.cosx\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin2x\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{3}+k2\pi\\x=\dfrac{4\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)\(\left(k\in Z\right)\)

Vậy \(\left[{}\begin{matrix}x=-\dfrac{\pi}{3}+k\pi\\x=\dfrac{4\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)\(\left(k\in Z\right)\)

c) ĐK: \(x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\left(k\in Z\right)\)

Pt \(\Leftrightarrow\left(\sqrt{2}sinx-1\right)^2+\left(\sqrt{3}tan2x-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2}sinx-1=0\\\sqrt{3}tan2x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}sinx=\dfrac{1}{\sqrt{2}}\\tan2x=\dfrac{1}{\sqrt{3}}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k2\pi\\x=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\\x=\dfrac{\pi}{12}+k\pi\end{matrix}\right.\)\(\Rightarrow x\in\varnothing\)

Vậy pt vô nghiệm