K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)

=>\(\dfrac{sin^2a+1}{cos^2a}+\dfrac{cos^2a+1}{sin^2a}=7\)

=>\(\dfrac{sin^4a+sin^2a+cos^4a+cos^2a}{sin^2a\cdot cos^2a}=7\)

=>\(sin^4a+cos^4a+1=7\cdot sin^2a\cdot cos^2a\)

=>\(\left(sin^2a+cos^2a\right)^2-2\cdot sin^2a\cdot cos^2a+1=7\cdot sin^2a\cdot cos^2a\)

=>\(2=9\cdot sin^2a\cdot cos^2a\)

=>\(8=9\cdot sin^22a\)

=>16=9(1-cos4a)

=>1-cos4a=16/9

=>cos4a=-7/9

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

2.

\(\text{VP}=\frac{1}{32}(2+\cos 2x-2\cos 4x-\cos 6x)\)

\(=\frac{1}{32}[2+\cos 2x-2(2\cos ^22x-1)-(4\cos ^32x-3\cos 2x)]\)

\(=\frac{1}{8}(-\cos ^32x-\cos ^22x+\cos 2x+1)=\frac{1}{8}(\cos 2x+1)(1-\cos ^22x)=\frac{1}{8}(\cos 2x+1)\sin ^22x\) (1)

\(\text{VT}=\sin ^2x\cos ^4x=\frac{1}{8}.(2\sin x\cos x)^2.2\cos ^2x=\frac{1}{8}\sin ^22x.(\cos 2x+1)(2)\)

Từ $(1);(2)$ ta có đpcm.

 

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

1.

\(\sin ^8x-\cos ^8x=(\sin ^4x+\cos ^4x)(\sin ^4x-\cos ^4x)\)

\(=[(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x](\sin ^2x+\cos ^2x)(\sin ^2x-\cos ^2x)\)

\(=(1-2\sin ^2x\cos ^2x)(\sin ^2x-\cos ^2x)\)

\(=(1-\frac{\sin ^22x}{2})(-\cos 2x)=-\frac{(2-\sin ^22x)\cos 2x}{2}=-\frac{(1+\cos ^22x)\cos 2x}{2}\) (1)

\(-(\frac{7}{8}\cos 2x+\frac{1}{8}\cos 6x)=\frac{-7}{8}\cos 2x-\frac{1}{8}(4\cos ^32x-3\cos 2x)=-\frac{\cos 2x+\cos ^32x}{2}\)

\(=\frac{-\cos 2x(\cos ^22x+1)}{2}\) (2)

Từ $(1);(2)$ ta có đpcm.

19 tháng 8 2023

Để tính giá trị của sin^4(a) + cos^4(a), ta sử dụng công thức mở rộng (a + b)^2 = a^2 + 2ab + b^2. Áp dụng công thức này cho sin^2(a) và cos^2(a), ta có: sin^4(a) + cos^4(a) = (sin^2(a) + cos^2( a))^2 - 2sin^2(a)cos^2(a) Vì theo công thức lượng giác cơ bản, sin^2(a) + cos^2(a) = 1, từ đó ta có: sin^ 4(a) + cos^4(a) = 1 - 2sin^2(a)cos^2(a) Tuy nhiên, trong bài toán này, ta biết cos(4a) = 1/4. Sử dụng công thức lượng giác: cos(4a) = cos^2(2a) - sin^2(2a) = 1/4 Ta biến đổi biểu thức này để tìm giá trị của sin^2(2a)cos^2( 2a): cos^2(2a) - sin^2(2a) = 1/4 cos^2(2a) - (1 - cos^2(2a)) = 1/4 2cos^2(2a) - 1 = 1/4 cos^2(2a) = 5/8 Thay giá trị này vào biểu thức trước đó: sin^4(a) + cos^4(a) = 1 - 2sin^2(a)cos^2(a) = 1 - 2sin ^2(a)(5/8) = 1 - 5/4sin^2 (a) Tiếp theo, để tính giá trị của sin^6(a) + cos^6(a), ta nhận thấy rằng (sin^2(a))^3 + (cos^2(a))^3 tương đương với công thức mở rộng (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3. Thay a = sin^2(a) và b = cos^2(a), ta có: (sin^2(a))^3 + (cos^2(a))^3 = (sin^2(a) ) + cos^2(a))(sin^4(a) - sin^2(a)cos^2(a) + cos^4(a)) = (sin^2(a) + cos^2 ( a))(1 - 5/4sin^2(a)) Vì sin^2(a) + cos^2(a) = 1 nên ta có: (sin^2(a))^3 + (cos^2 (a))^3 = 1 - 5/4sin^2(a) Do đó, giá trị của sin^6(a) + cos^6(a) là 1 - 5/4sin^2(a). Tóm lại, giá trị của sin^4(a) + cos^4(a) là 1 - 5/4sin^2(a) và giá trị của sin^6(a) + cos^6(a) là 1 - 5/4sin^2(a).

\(A=\dfrac{1}{4}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{1010^2}\right)\)

1/2^2+1/3^2+...+1/2010^2<1/1*2+1/2*3+...+1/2009*2010=1-1/2010<1

=>A<1/4

21 tháng 6 2021

a) Cần chứng minh \(\dfrac{1-cos\alpha}{sin\alpha}=\dfrac{sin\alpha}{1+cos\alpha}\)

\(\Rightarrow sin^2\alpha=\left(1-cos\alpha\right)\left(1+cos\alpha\right)\Rightarrow sin^2\alpha=1-cos^2\alpha\)

\(\Rightarrow sin^2\alpha+cos^2\alpha=1\)

Giả sử tam giác ABC vuông tại A

Ta có: \(\left\{{}\begin{matrix}sin^2B=\dfrac{AC^2}{BC^2}\\cos^2B=\dfrac{AB^2}{BC^2}\end{matrix}\right.\Rightarrow sin^2B+cos^2B=\dfrac{AC^2+AB^2}{BC^2}=\dfrac{BC^2}{BC^2}=1\)

 

 

21 tháng 6 2021

a)\(\dfrac{1-cosa}{sina}=\dfrac{sina}{1+cosa}\)

<=>\(\left(1-cosa\right)\left(1+cosa\right)=sin^2a\)

<=>\(1-cos^2a=sin^2a\) (lđ)

b)Ta có VT=\(\dfrac{cosa}{1+sina}+tga=\dfrac{cosa}{1+sina}+\dfrac{sina}{cosa}=\dfrac{cos^2a+sin^2a+sina}{\left(1+sina\right)cosa}=\dfrac{1+sina}{\left(1+sina\right)cosa}=\dfrac{1}{cosa}=vp\left(dpcm\right)\)

 

28 tháng 6 2021

Có: `(cosx)/(1-sinx)=(1+sinx)/(cosx)`

`<=> cos^2x=(1-sinx)(1+sinx)`

`<=> cos^2x=1-sin^2x`

`<=> cos^2x=cos^2x`

`=>` ĐPCM.

28 tháng 6 2021

- Chỉ có cosx, cosa, cosα,... chứ không có "cos" bạn nhớ.

a: VT=sin^2a(sin^2a+cos^2a)+cos^2a

=sin^2a+cos^2a

=1=VP

b: \(VT=\dfrac{sina+sina\cdot cosa+sina-sina\cdot cosa}{1-cos^2a}=\dfrac{2sina}{sin^2a}=\dfrac{2}{sina}=VP\)

c: \(VT=\dfrac{sin^2a+1+2cosa+cos^2a}{sina\left(1+cosa\right)}\)

\(=\dfrac{2\left(cosa+1\right)}{sina\left(1+cosa\right)}=\dfrac{2}{sina}=VP\)