Cho tam giác cân ABC,DBC,EBC chung đáy BC.Chứng minh rằng ba điểm A,D,E thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ∆ABC cân tại A => AB = AC
=> A thuộc trung trực của BC
Vì ∆DBC cân tại D => DB = DC
=> D thuộc trung trực của BC
Vì ∆EBC cân tại E => EB = EC
=> E thuộc trung trực của BC
Do đó A, D, E thuộc đường trung trực của BC nên A, D, E thẳng hàng.
Gọi d là đường trung trực của đoạn thẳng BC theo định lí 2 :
AB=AC => A thuộc d
DB=DC => D thuộc d
EC=EB => E thuộc d
Các điểm A D E cùng thuộc đường thẳng d. Vậy A D E thẳng hàng
Tam giác ABC cân tại A nên AB = AC
Khi đó A thuộc đường trung trực của BC (1)
Tam giác DBC cân tại D nên DB = DC
Khi đó D thuộc đường trung trực của BC (2)
Tam giác EBC cân tại E nên EB = EC
Khi đó E thuộc đường trung trực của BC (3)
Từ (1), (2) và (3) suy ra: A, D, E thẳng hàng.
Vì ∆ABC cân tại A => AB = AC
=> A thuộc trung trực của BC
Vì ∆DBC cân tại D => DB = DC
=> D thuộc trung trực của BC
Vì ∆EBC cân tại E => EB = EC
=> E thuộc trung trực của BC
Do đó A, D, E thuộc đường trung trực của BC nên A, D, E thẳng hàng
Vì ΔABC cân tại A ⇒ AB = AC
⇒ A thuộc đường trung trực của BC.
Vì ΔDBC cân tại D ⇒ DB = DC
⇒ D thuộc đường trung trực của BC
Vì ΔEBC cân tại E ⇒ EB = EC
⇒ E thuộc đường trung trực của BC
Do đó A, D, E cùng thuộc đường trung trực của BC
Vậy A, D, E thẳng hàng
bn tự vẽ hình nha
Xét tam giác ABC cân tại A
\(\Rightarrow\)AB = AC
\(\Rightarrow\)A thuộc trung trực của BC (1)
Xét tam giác DBC cân tại D
\(\Rightarrow\)DB = DC
\(\Rightarrow\)D thuộc đường trung trực của BC (2)
xét ta giác EBC cân tại E
\(\Rightarrow\)EB = EC
\(\Rightarrow\)E thuộc đường trung trực của BC (3)
Từ (1) (2) (3):
\(\Rightarrow\)A , D , E thẳng hàng
~~ hok tốt ~~
tam giác ABC ; DBC ; EBC lần lượt cân tại đỉnh A; D; E
=> AB = AC => A thuộc đường trung trưc của đoạn thẳng BC
DB = DC => D thuộc đường trung trực của đoạn thẳng BC
EB = EC => E thuộc đường trung trực của đoạn thẳng BC
Vậy A; D; E đều thuộc đường trung trực của đoạn thẳng BC hay A; D; E thẳng hàng
Hướng dẫn:
Vì ∆ABC cân tại A => AB = AC
=> A thuộc trung trực của BC
Vì ∆DBC cân tại D => DB = DC
=> D thuộc trung trực của BC
Vì ∆EBC cân tại E => EB = EC
=> E thuộc trung trực của BC
Do đó A, D, E thuộc đường trung trực của BC nên A, D, E thẳng hàng
Hướng dẫn:
Vì ∆ABC cân tại A => AB = AC
=> A thuộc trung trực của BC
Vì ∆DBC cân tại D => DB = DC
=> D thuộc trung trực của BC
Vì ∆EBC cân tại E => EB = EC
=> E thuộc trung trực của BC
Do đó A, D, E thuộc đường trung trực của BC nên A, D, E thẳng hàng
(mạng cx đã có phần gợi ý, vc còn lại là lắp vào bài thôi.)
Xét \(\Delta\)ABC cân tại A ta có :
AB = AC
=> A thuộc đường trung trức của BC (1)
Xét \(\Delta\)DBC cân tại D ta có
DB = DC
=> D thuộc đường trung trực của BC (2)
Xét \(\Delta\)EBC cân tại E ta có :
EB = EC
=> E thuộc đường trung trực của BC (3)
Từ (1) ; (2) và (3)
Suy ra : A ; D ; E thuộc đường trung trực BC
và A ; D ; E thẳng hàng
Nguồn (gợi ý): Bài 46 SGK - tập 2 trang 76 - Toán lớp 7 | Học trực tuyến (vào TK nhìn thấy)
A B C D E
Vì AB = AC (gt) => A nằm trên đường trung trực của BC
Vì BD = DC (gt) => D nằm trên đường trung trực của BC
Vì BE = EC (gt) => E nằm trên đường trung trực của BC
=> A; D; E cùng nằm trên đường trung trực của BC
=> A ; D ; E thẳng hằng