từ các số 1,2,3,4,5,6,7,8 có bao nhiêu cách lập số tự nhiên gồm 5 chữ số khác nhau biết rằng chữ số 7 và 8 luôn đứng cạnh nhau và luôn có mặt
giải giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
12345
12435
12453
12354
12543
12534
31245
31254
35124.............nhiều lắm
Chọn C
Ta xem 3 chữ số 1; 2; 3 đứng cạnh nhau là một phần tử X.
Chọn ra 3 chữ số còn lại có C 4 3 cách chọn.
Xếp phần tử X và 3 chữ số vừa chọn ta có: 4! Cách.
Các chữ số 1;2;3 trong X có thể hoán vị cho nhau có: 3! Cách.
Vậy có tất cả C 4 3 . 4 ! . 3 ! = 576 (số)
Coi số 7 và số 8 như một số. Ta sẽ chọn ra một số \(\overline{abcd}\) mà a,b,c,d được lấy từ tập gồm {1;2;3;4;5;6;{7;8}}
Vì 7 và 8 luôn có mặt nên ta sẽ chọn cho 7 và 8 trước.
=>Có 4 cách chọn vị trí
Vì số 7 và 8 có thể hoán đổi được nên sẽ có 2!=2 cách hoán đổi
Số cách chọn cho 3 vị trí còn lại từ 6 số là 6*5*4=120(cách)
=>Có 4*2*120=120*8=960(số) cần tìm