Cho đơn thức : A=3.( a^2 + \(\frac{1}{a^2}\)) x^2. y^4 . z^6 ( a: hằng số)
a. Chứng tỏ A luôn không âm với x,y,z
b. Với giá trị nào của x,y,z thì a=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3\left(a^2+\left(\frac{1}{a}\right)^2\right)x^2y^4z^6\)
Ta có : \(a^2;\left(\frac{1}{a}\right)^2\ge0\forall a\Rightarrow3\left(a^2+\left(\frac{1}{a}\right)^2\right)\ge0\forall a\)
\(x^2;y^4;z^6\ge0\forall x;y;z\)
=> \(A=3\left(a^2+\left(\frac{1}{a}\right)^2\right)x^2y^4z^6\ge0\)
=> A luôn nhận giá trị không âm với mọi x, y, z
Để A = 0 => Ít nhất một giá trị = 0
=> Hoặc x = 0 ; y = 0 ; z = 0 thì A = 0
Ta có: \(a^2,x^2,y^4,z^6\ge0\)với \(\forall a,x,y,z\)
Dấu "=" xảy ra khi \(a=x=y=z=0\)
Lại có: \(3\left(a^2+\frac{1}{a^2}\right)\)khác 0 với \(\forall a\)
Do đó để A = 0 thì x = 0 hoặc y = 0 hoặc z = 0
đơn thức là học ở lớp 7
các bài này có trong lớp 7
=>đó là bài lớp 7
=>đpcm
1)Đặt A= -125- ( x - 4)2 - ( y- 5 )2
Ta thấy:\(\begin{cases}-\left(x-4\right)^2\le0\\-\left(y-5\right)^2\le0\end{cases}\)
\(\Rightarrow-\left(x-4\right)^2-\left(y-5\right)^2\le0\)
\(\Rightarrow-125-\left(x-4\right)^2-\left(y-5\right)^2\le-125-0\)
\(\Rightarrow A\le-125\)
Dấu "=" xảy ra khi \(\begin{cases}-\left(x-4\right)^2=0\\-\left(y-5\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=4\\y=5\end{cases}\)
Vậy...