K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2017

\(\frac{1}{2}+\frac{2}{3}=\frac{3}{6}+\frac{4}{6}=\frac{7}{6}=1\frac{1}{6}\)

k nhé

23 tháng 2 2017

bằng 7/6 nha bạn

30 tháng 11 2015

\(1+\frac{1+\frac{1+\frac{3}{2}}{2}}{2}=1+\frac{1+\frac{\frac{5}{2}}{2}}{2}=1+\frac{1+\frac{5}{4}}{2}=1+\frac{\frac{9}{4}}{2}=1+\frac{9}{8}=\frac{17}{8}\)

\(1+\frac{2}{1+\frac{2}{1+\frac{2}{3}}}=1+\frac{2}{1+\frac{2}{\frac{5}{3}}}=1+\frac{2}{1+\frac{6}{5}}=1+\frac{2}{\frac{11}{5}}=1+\frac{10}{11}=\frac{21}{11}\)

\(1+\frac{1+\frac{1+\frac{2}{3}}{3}}{3}=1+\frac{1+\frac{\frac{5}{3}}{3}}{3}=1+\frac{1+\frac{5}{9}}{3}=1+\frac{\frac{14}{9}}{3}=1+\frac{14}{27}=\frac{41}{27}\)

\(\frac{3}{\frac{3}{\frac{3}{\frac{3}{2}+1}+1}+1}+1=1+\frac{3}{\frac{3}{\frac{3}{\frac{5}{2}}+1}+1}=1+\frac{3}{\frac{3}{\frac{6}{5}+1}+1}=1+\frac{3}{\frac{15}{11}+1}=\frac{59}{26}\)

suy ra

\(\frac{\frac{17}{18}}{\frac{21}{11}}-x=\frac{187}{378}-x=\frac{\frac{41}{27}}{\frac{59}{26}}=\frac{1066}{1593}\Rightarrow x=-\frac{1297}{7434}\)

 

30 tháng 11 2015

toàn là những bài toán khó vậy

8 tháng 7 2016

các bn ơi giải giúp mình đi mà

6 tháng 10 2016

giải:

ta có :

\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}:\frac{3+\frac{3}{2}+\frac{3}{3}+\frac{3}{4}}{2-\frac{2}{2}+\frac{2}{3}-\frac{2}{4}}\)

\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}.\frac{2\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)}{3\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)}=\frac{2}{3}\)

 
...
Đọc tiếp

\(\left(\frac{-5}{12}+\frac{7}{4}-\frac{3}{8}\right)-\left[4\frac{1}{2}-7\frac{1}{3}\right]-\left(\frac{1}{4}-\frac{5}{2}\right)\)

\(\left[2\frac{1}{4}-5\frac{3}{2}\right]-\left(\frac{3}{10}-1\right)-5\frac{1}{2}+\left(\frac{1}{3}-\frac{5}{6}\right)\)

\(\frac{4}{7}-\left(3\frac{2}{5}-1\frac{1}{2}\right)-\frac{5}{21}+\left[3\frac{1}{2}-4\frac{2}{3}\right]\)

\(\frac{1}{8}-1\frac{3}{4}+\left(\frac{7}{8}-3\frac{7}{2}+\frac{3}{4}\right)-\left[\frac{7}{4}-\frac{5}{8}\right]\)

\(\left(\frac{3}{5}-2\frac{1}{10}+\frac{11}{20}\right)-\left[\frac{-3}{4}+1\frac{7}{2}\right]\)

\(\left[-2\frac{1}{5}-2\frac{2}{3}\right]-\left(\frac{1}{15}-5\frac{1}{2}\right)+\left[\frac{-1}{6}+\frac{1}{3}\right]\)

\(1\frac{1}{8}-\left(\frac{1}{15}-\frac{1}{2}+\frac{-1}{6}\right)+\left[\frac{5}{4}+\frac{3}{2}\right]\)

\(\frac{5}{6}-\left(1\frac{1}{3}-1\frac{1}{2}\right)+\left[\frac{5}{12}-\frac{3}{4}-\frac{1}{6}\right]\)

\(1\frac{1}{4}-\left(\frac{7}{12}-\frac{2}{3}-1\frac{3}{8}\right)+\left[\frac{5}{24}-2\frac{1}{2}\right]-\frac{1}{6}-\left[\frac{-3}{4}\right]\)

\(-2\frac{1}{5}+2\frac{3}{10}-\left(\frac{6}{20}-\left[\frac{2}{8}-1\frac{1}{2}\right]\right)+\left[\frac{7}{20}-1\frac{1}{4}\right]\)

\(-\left[1\frac{2}{3}-3\frac{1}{2}+\frac{1}{4}\right]+\left(\frac{2}{6}-\frac{5}{12}\right)-\left(\frac{1}{3}-\left[\frac{1}{4}-\frac{1}{3}\right]\right)\)

\(-\frac{4}{5}-\left(1\frac{1}{10}-\frac{7}{10}\right)+\left[\frac{3}{4}-1\frac{1}{5}\right]+1\frac{1}{2}\)

\(\frac{3}{21}-\frac{5}{14}+\left[1\frac{1}{3}-5\frac{1}{2}+\frac{5}{14}\right]-\left(\frac{1}{6}-\frac{3}{7}+\frac{1}{3}\right)\)

\(-1\frac{2}{5}+\left[1\frac{3}{10}-\frac{7}{20}-1\frac{1}{4}\right]-\left(\frac{1}{5}-\left[\frac{3}{4}-1\frac{1}{2}\right]\right)\)

\(2\frac{1}{3}-\left(\frac{1}{2}-2\frac{1}{6}+\frac{3}{4}\right)+\left[\frac{5}{12}-1\frac{1}{3}\right]-\frac{7}{8}+3\frac{1}{2}\)

\(2\frac{1}{4}-1\frac{3}{5}-\left(\frac{9}{20}-\frac{7}{10}\right)+\left[1\frac{3}{5}-2\frac{1}{2}\right]+\frac{3}{4}\)

\(\left[\frac{8}{3}-5\frac{1}{4}+\frac{1}{6}\right]-\frac{7}{4}+\frac{-5}{12}-\left(1-1\frac{1}{2}+\frac{1}{3}\right)\)

\(\left(\frac{1}{4}-\left[1\frac{1}{4}-\frac{7}{10}\right]+\frac{1}{2}\right)-2\frac{1}{5}-1\frac{3}{10}+\left[1-\frac{1}{2}\right]\)

TRÌNH BÀY GIÚP MÌNH NHA 

0
...
Đọc tiếp

\(3\frac{1}{2}-4\frac{2}{3}+\left[\frac{3}{4}-2\frac{1}{3}\right]-\left(\frac{5}{6}-\frac{7}{4}\right)+5\frac{1}{2}-3\)

\(2\frac{2}{3}-1\frac{2}{5}+1\frac{3}{10}-\left(\frac{2}{5}-\frac{5}{6}\right)+\frac{4}{15}-1\frac{1}{3}\)

\(\left[2\frac{1}{3}-1\frac{4}{3}\right]-\left(\frac{5}{4}-\frac{7}{12}+\frac{-11}{6}\right)+\frac{4}{3}-\frac{3}{4}\)

\(-3\frac{3}{2}+5\frac{4}{3}-\left(\frac{7}{6}-1\frac{3}{4}\right)+\left[\frac{2}{3}-2\frac{1}{4}\right]\)

\(2\frac{2}{3}-\frac{5}{12}-\left(1\frac{3}{4}-2\frac{1}{4}\right)-\left[1-1\frac{1}{6}\right]+\left[\frac{-5}{3}\right]\)

\(1\frac{1}{3}-5\frac{1}{2}-\left[\frac{5}{6}-2\frac{2}{3}\right]+\left[\frac{7}{12}-\frac{5}{6}\right]\)

\(\frac{8}{15}-\left(\frac{2}{5}-3\frac{1}{3}+\left[\frac{-5}{6}\right]\right)+\left[\frac{1}{2}-\frac{4}{5}\right]-\left(\frac{1}{6}-1\frac{1}{3}\right)\)

\(-2\frac{3}{2}+\left[\frac{5}{6}-1\frac{1}{3}\right]-\left(\frac{5}{12}-\frac{7}{6}\right)+\left[\frac{4}{3}-3\frac{1}{4}\right]\)

\(\frac{9}{10}-1\frac{2}{5}-\left(\frac{5}{6}-3\frac{1}{2}\right)-\left[2\frac{1}{4}-5\frac{2}{36}\right]-\left[1-2\frac{1}{15}\right]\)

\(\frac{5}{7}-\frac{5}{21}+1\frac{2}{3}-\left(1\frac{1}{2}-\frac{5}{14}-\frac{1}{3}\right)+\left[\frac{1}{6}-\frac{4}{3}\right]\)

\(\frac{5}{7}-\frac{5}{21}+1\frac{2}{3}-\left(1\frac{1}{2}-\frac{5}{14}-\frac{1}{3}\right)+\left[\frac{1}{6}-\frac{4}{3}\right]\)

\(1\frac{1}{5}-\left(\frac{-9}{10}-2\frac{1}{2}+\frac{3}{4}\right)+\left[\frac{1}{5}-2\frac{1}{2}\right]+\frac{7}{10}-\left(\frac{1}{2}-\frac{1}{4}\right)\)

\(2\frac{1}{3}-\left(5\frac{1}{2}-2\frac{2}{3}\right)+\left[1\frac{1}{6}-2\frac{1}{2}\right]-\frac{5}{12}+\left(\frac{1}{4}-\frac{1}{8}\right)\)

 

 

 

 

 

 

 

 

2
19 tháng 6 2018
  1. ​29/15
  2. 23
  3. 23/12
  4. 5/6
  5. 5/4
  6. -31/12
  7. 31/6
  8. -13/3
  9. 1087/180
  10. 1/6
  11. 1/6
  12. 2
  13. -67/24
11 tháng 4 2022
Ôi mẹ ơi dài khiếp
15 tháng 4 2018

\(b)\) Đặt \(B=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) ta có : 

\(B>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{3+3+3+3+3}{15}=\frac{3.5}{15}=\frac{15}{15}=1\)

\(\Rightarrow\)\(B>1\) \(\left(1\right)\)

Lại có : 

\(B< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{3+3+3+3+3}{10}=\frac{3.5}{10}=\frac{15}{10}< \frac{20}{10}=2\)

\(\Rightarrow\)\(B< 2\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(1< B< 2\) ( đpcm ) 

Vậy \(1< B< 2\)

Chúc bạn học tốt ~ 

15 tháng 4 2018

tra loi nhah giup m nha

14 tháng 2 2019

\(A=3.\frac{1}{2}\left(2.\frac{1}{3}+\frac{-1}{3}\right)\)

\(A=\frac{3}{2}.\frac{1}{3}=\frac{1}{2}\)

\(B=\frac{-1}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}\right)\)

\(B=\frac{-1}{2}.\frac{1}{2}=-\frac{1}{4}\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) \(\frac{3}{4} + \left( {\frac{1}{2} - \frac{1}{3}} \right) = \frac{9}{{12}} + \left( {\frac{6}{{12}} - \frac{4}{{12}}} \right) = \frac{9}{{12}} + \frac{2}{{12}} = \frac{{11}}{{12}}\)

\(\frac{3}{4} + \frac{1}{2} - \frac{1}{3} = \frac{9}{{12}} + \frac{6}{{12}} - \frac{4}{{12}} = \frac{{15}}{{12}} - \frac{4}{{12}} = \frac{{11}}{{12}}\)

Vậy \(\frac{3}{4} + \left( {\frac{1}{2} - \frac{1}{3}} \right)\) = \(\frac{3}{4} + \frac{1}{2} - \frac{1}{3}\)    

b)\(\frac{2}{3} - \left( {\frac{1}{2} + \frac{1}{3}} \right) = \frac{4}{6} - \left( {\frac{3}{6} + \frac{2}{6}} \right) = \frac{4}{6} - \frac{5}{6} = \frac{{ - 1}}{6}\)

 \(\frac{2}{3} - \frac{1}{2} - \frac{1}{3} = \frac{4}{6} - \frac{3}{6} - \frac{2}{6} = \frac{1}{6} - \frac{2}{6} = \frac{{ - 1}}{6}\)

Vậy \(\frac{2}{3} - \left( {\frac{1}{2} + \frac{1}{3}} \right)\)=\(\frac{2}{3} - \frac{1}{2} - \frac{1}{3}\).

`#3107`

`a)`

`3/4 + (1/2 - 1/3)`

`= 3/4 + (3/6 - 2/6)`

`= 3/4 + 1/6`

`= 11/12`

 

`3/4 + 1/2 - 1/3`

`= 9/12 + 6/12 - 4/12`

`= (9 + 6 - 4)/12`

`= 11/12`

Vì `11/12 = 11/12`

`=> 3/4 + (1/2 - 1/3) = 3/4 + 1/2 - 1/3`

`b)`

`2/3 - (1/2 + 1/3)`

`= 2/3 - (3/6 + 2/6)`

`= 2/3 - 5/6`

`= -1/6`

 

`2/3 - 1/2 - 1/3`

`= 4/6 - 3/6 - 2/6`

`= (4 - 3 - 2)/6`

`= -1/6`

Vì `-1/6 = -1/6`

`=> 2/3 - (1/2 + 1/3) = 2/3 - 1/2 - 1/3`

Y
14 tháng 5 2019

Đặt \(a=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{2019^2}\)

\(b=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\)

Khi đó : \(D=ab-\left(b+1\right)\left(a-1\right)\)

\(\Rightarrow D=ab-\left(ab+a-b-1\right)\)

\(\Rightarrow D=b-a+1=\frac{1}{2020^2}-1+1=\frac{1}{2020^2}\)