K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2021

a) tam giác ABC cân tại A nên hai góc ABC= ACB

Ta có: góc ABM= 180 độ - góc ABC ( kề bù )

           góc ACN= 180 độ - ACB ( kề bù )

Vậy góc ABM= góc ACN

Xét tam giác ABM và tg ACN có:

AB=AC ( tg ABC cân tại A )

góc ABM= góc ACN ( cmt )

BM=CN(gt)

=> tg ABM= tg ACN ( c-g-c)

=> AM=AN( 2 cạnh tương ứng )

=> tg AMN cân tại A

b) Vì tg AMN cân tại A nên góc AMN= góc ANM

Xét tg HBM và tg KCN có:

góc MHB= góc NKC( = 90 độ )

BM=CN ( gt)

góc AMN= góc ANM ( tg AMN cân tại A)

=> tg HBM= tg KCN ( cạnh huyền - góc nhọn )

=> BH= CK ( 2 cạnh tương ứng )

c) Vì tg HBM = tg KCN nên => HM= KN ( 2 cạnh tương ứng )

Lại có: HM+HA= AM; KN+KA= AN

Vì AM= AN ( tg AMN cân tại A )

     HM= HN                                   

=> AH= AK

d) tg ABM = tg CKN => góc HBM = góc KCN

góc CBO = góc HBM và góc KCN= góc BCO ( đối đỉnh )

=> tg OBC cân tại O

e) Khi góc BAc = 60 độ => tg ABC đều

=> BM = AB 

=> tg ABM cân tại B

Ta có : góc AMB =  . ABC =  = 30 độ

góc A= 180 độ - 30 độ - 30 độ = 120 độ

góc KCN = góc BCO = 60 độ

16 tháng 12 2021

a: Xét ΔABM và ΔACN có 

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

8 tháng 1 2022

( Hình bạn tự vẽ giúp mình nha )

a) Xét △ ABM và △ ACN có

          AB = AC

          BM = CN

         \(\widehat{ABM}=\widehat{ACN}\)

⇒ △ ABM = △ ACN ( c - g - c )

⇒ AM = AN ( hai cạnh tương ứng )

Suy ra: △ AMN cân tại A

b) Xét tam giác vuông BME và tam giác vuông CNF ta có:

         MB = CN

         \(\widehat{EMB}=\widehat{CNF}\)   ( vì △ AMN cân tại A )

⇒ △ BME = △ CNF ( ch - gn )

c) Vì △ BME = △ CNF ( cmt )

⇒ ME = CF

⇒ EA = FA  

Xét tam giác vuông EAO và tam giác vuông AOF ta có:

          AE = FA

          AO cạnh chung

⇒ △ EOA = △ FOA ( ch - cgv )

⇒ \(\widehat{EAO}=\widehat{FAO}\)

Hay AO là tia phân giác góc \(\widehat{MAN}\)

d) Ta có:     EO ⊥ AM

                   MH ⊥ AM

⇒ EO // MH

Lại có:    \(\widehat{AOE}=\widehat{AHM}\) ( cùng phụ \(\widehat{EAO}\) )

Từ đó suy ra:    A, O, H thẳng hàng

Xét ΔABM và ΔACN co

AB=AC
góc ABM=góc ACN

BM=CN

Do đó: ΔABM=ΔACN

=>góc M=góc N

Xét ΔBME vuông tại E và ΔCNF vuông tại F có

BM=CN

góc M=góc N

Do đó: ΔBME=ΔCNF

a: Xét ΔABM và ΔACN có

AB=AC

góc ABM=góc ACN

BM=CN

Do đó: ΔABM=ΔACN

=>AM=AN

b: Xét ΔBME vuông tại E và ΔCNF vuông tại F có

BM=CN

góc M=góc N

Do đó: ΔBME=ΔCNF

c: góc OBC=góc EBM

góc OCB=góc FCN

mà góc EBM=góc FCN

nên góc OBC=góc OCB

=>OB=OC

mà AB=AC
nên AO là trung trực của BC

=>AO vuông góc với BC

ΔAMN cân tại A

mà AO là đường cao

nên AO là phân giác của góc MAN

3 tháng 3 2021

Violympic toán 7

28 tháng 3 2021

â mây zing gút chọp

a) Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACN}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABM}=\widehat{ACN}\)(cmt)

BM=CN(cmt)

Do đó: ΔABM=ΔACN(c-g-c)

Suy ra: AM=AN(hai cạnh tương ứng)

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)