Cho tam giác đều ABC.Trên tia đối tia CB lấy điểm D,trên tia đối của tia BC lấy điểm E sao cho BE=BC=CD.CM;
a,tg ADE là tam giác cân
b,Tính:BAD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GT : Tam giác đều ABC
BD = CE = BC
KL Tam giác ADE là tam giác gì vì sao
Số đo góc DAE
CM:
a)Tam giác ABC là tam giác đều
Suy ra : \(\widehat{A_1}=\widehat{B_1}=\widehat{C_1}\)
AB=BC=AC
Vì \(\widehat{B_1}=\widehat{C_1}\) (chúng minh trên)
Suy ra : \(\widehat{B_2}=\widehat{C_{ }_2}\) (hai hóc kề bù)
\(\Delta ABD\) VÀ \(\widehat{ACE}\) CÓ:
AB = AC ( chứng minh trên)
\(\widehat{B_2}=\widehat{C_{ }_2}\) (CHỨNG MINH TRÊN )
BD = CE (GT)
Do đó : \(\Delta ABD=\Delta ACE\) (c. g. c)
Suy ra : \(\widehat{D}=\widehat{E}\)
=> \(\Delta ADE\) cân tại A
b)
a, Ta có : ΔABC có AB = AC
⇒ ΔABC là tam giác cân
⇒ ∠B = ∠C = 180 - ∠A/2
Xét ΔADC và ΔAEB có :
DC = BE ( DB+BC = EC+CB )
∠ACD = ∠ABE ( chứng minh trên )
AC = AB
⇒ ΔADC = ΔAEB (c.g.c)
⇒ AD = AE ( 2 cạnh tương ứng )
b, Ta có : ∠ABD + ∠ABC = 180 ( 2 góc kề bù )
∠ACB + ∠ACE = 180 ( 2 góc kề bù )
Mà ∠ABC = ∠ACB
⇒ ∠ABD = ∠ACE
Xét ΔABD và ΔACE có :
AB = AD
∠ABD = ∠ACE
BD = CE
⇒ ΔABD = ΔACE (c.g.c)
Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
XÉT TAM GIÁC ABD VÀ TAM GIÁC ACE CÓ
AB=AC (GT)
BD=CE (GT)
GÓC \(\widehat{ABD}+\widehat{_{ }_{ }B_1}=180^o\)
\(\widehat{ACE}+C_1=180^o\)
=>\(\hept{\begin{cases}\widehat{ABD}+B_1=\widehat{ACE}+\widehat{C}_1\\\widehat{B}_1=\widehat{C_1}\end{cases}}\hept{ }=>\widehat{ABD}=\widehat{ACE}\)
=>\(\Delta ABD=\Delta ACE\left(CGC\right)\)
=>\(AD=AE=>\Delta ADE\)CÂN TẠI A