K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2021

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{100^2}< \frac{1}{99.100}\)

Cộng vế với vế ta được : 

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy ta có đpcm 

3 tháng 6 2019

Ta có : \(\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}\)

\((1-\frac{1}{2})+(1-\frac{1}{3})+...+(1-\frac{99}{100})\)(100 cặp số )

\(\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)(100 số hạng 1)

\(1\times100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{100}\right)\)

\(100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)

=> 100-(1+1/2+1/3+...+1/100) = 1/2+2/3+3/4+...+99/100

3 tháng 6 2019

Bạn cố giải cho mình dễ hiểu hơn ko?

22 tháng 4 2015

Co 1/2^2+1/3^2+...+1/100^2<1/1.2+1/2.3+...+1/99.100

                                           =1-1/2+1/2-1/3+...+1/99-1/100

                                          =1-1/100<1

vay 1/2^2+...+1/100^2<1

22 tháng 4 2015

Ta thấy: \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};....;\frac{1}{100^2}<\frac{1}{99.100}\)

Cộng vế theo vế ta được: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+...+\left(\frac{1}{98}-\frac{1}{99}\right)+\left(\frac{1}{99}-\frac{1}{100}\right)\)                                                                \(=1-\frac{1}{100}<1\)

 Do đó: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}<1\)