K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{20}\left(1+2+3+...+20\right)\)

\(=1+\dfrac{1}{2}\cdot\dfrac{2\cdot3}{2}+\dfrac{1}{3}\cdot\dfrac{3\cdot4}{2}+...+\dfrac{1}{20}\cdot\dfrac{20\cdot21}{2}\)

\(=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{21}{2}\)

\(=\dfrac{2+3+4+...+21}{2}=\dfrac{\left(21+2\right)+\left(3+20\right)+...+\left(10+13\right)+\left(11+12\right)}{2}\)

\(=\dfrac{23+23+...+23}{2}=\dfrac{23\cdot10}{2}=23\cdot5=115\)

11 tháng 12 2015

hỏi google đi trời mô làm được

20 tháng 3 2022

`Answer:`

\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)

\(=1+\frac{1}{2}.3+...+\frac{1}{2}.210\)

\(=1+1,5+2+...+10,5\)

\(=\frac{\left(10,5+1\right)[\left(10,5-1\right):0,5+1]}{2}\)

\(=\frac{230}{2}\)

\(=115\)

2 tháng 3 2017

\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)

\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3\left(3+1\right)}{2}+...+\frac{1}{20}.\frac{20\left(20+1\right)}{2}\)

\(=\frac{2}{2}+\frac{2+1}{2}+\frac{3+1}{2}+...+\frac{20+1}{2}\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{20}{2}\)

\(=\frac{2+3+4+...+20}{2}=\frac{\frac{20\left(20+1\right)}{2}-1}{2}=\frac{209}{2}\)

31 tháng 12 2024

Đinh Đức Hùng trả lời sai rồi