cho tam giác ABC có AB<AC .gọi M là trung điểm của BC . chứng minh
góc AMC > góc AMB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam giác ABM và tam giác ACM có: AB = AC (GT) góc ABM = góc ACM (vì AB = AC => tam giác ABC cân) BM = MC (GT) => tam giác ABM = tam giác ACM (c.g.c) => ˆ A M B = ˆ A M C (2 góc tương ứng) Mà ˆ A M B + ˆ A M C =1800 (kề bù) => ˆ A M B = ˆ A M C = 1 2 1800 = 900 Vậy ˆ A M B =900 ; ˆ A M C =900
Giải nề
A) xét ∆ amb và ∆ amc
Có AM chung
BM =MC ( M là trung điểm BC)
AB =AC (gt)
=> ∆ amb = ∆ amc ( c.c.c)
B) ∆ ABC có
AB = AC ( gt)
Nên ∆ ABC cân tại a
Có AM là trung tuyến
Nên cũng là đường cao
=> AM là đường trung trực của BC
C) ta có ∆ ABC là tam giác cân
Nên AM cũng là phân giác
=>Góc BAM = góc CAM = 1/2 góc bác = 25°
Ta có AM là đường cao
Hay AM vuông góc với BC
=> Góc AMB = 90°
Vì là ∆ vuông nên
Góc B = 90° -góc BAM
Góc B = 65°
Vậy ... Kết luận các câu trên nữa nha
a:AB<AC
=>góc C<góc B
góc BAM+góc B+góc AMB=góc CAM+góc C+góc AMC
mà góc BAM=góc CAM; góc B>góc C
nên góc AMB<góc AMC
b: Xét ΔABC có AM là phân giác
nên MB/AB=MC/AC
mà AB<AC
nên MB<MC
c: góc AMB<góc AMC
=>góc AMB<1/2(góc AMB+góc AMC)=90 độ
=>góc AMB nhọn
A B C M
a) ta có: \(AB^2+AC^2=24^2+32^2=40^2=BC^2\)
=> theo Pitago đảo thì tam giác ABC vuông tại A
b) Ta có: MC=AC-AM=32-7=25
\(\Delta ABM\)vuông tại A có: \(AM^2+AB^2=MB^2\)=> MB=\(\sqrt{AM^2+AB^2}=\sqrt{7^2+24^2}=25\)
Do đó: MB=MC => \(\Delta MBC\)cân tại M
=> \(\widehat{MBC}=\widehat{MCB}\)
Mặt khác \(\widehat{AMB}\)là góc ngoài \(\Delta MBC\)nên: \(\widehat{AMB}\)=\(\widehat{MBC}+\widehat{MCB}=2\widehat{MCB}\)(ĐPCM)
vì m là trung điểm nên bm=cm
vì am chung và theo gt ab=ac nên tam giác abm=acm
góc a =40 độ suy ra góc mab = góc mac=20
vì góc amb+amc=180độ mà góc amb=amc nên amb=amc=90 độ (2 góc tương ứng)
suy ra góc abm=góc acm =70 độ
vậy góc a= c =70 độ
góc amb=amc=90 độ
góc cam=bam=20 độ
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔAMB=ΔAMC
b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: MH=MK
Kẻ AH | BC ( H \(\in\) BC )
Xét \(\Delta AHM\) vuông tại H có góc HAM + góc AHM = 90o
\(\Rightarrow\)Góc AHM < 90o
\(\Rightarrow\) Góc AMB < 90o
Do đó góc AMB nhọn.