K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2021

b: Xét ΔABM vuông tại A có AK là đường cao

nên \(BK\cdot BM=AB^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BK\cdot BM=BH\cdot BC\)

hay \(\dfrac{BK}{BH}=\dfrac{BC}{BM}\)

Xét ΔBKC và ΔBHM có

\(\dfrac{BK}{BH}=\dfrac{BC}{BM}\)

\(\widehat{MBH}\) chung

Do đó: ΔBKC\(\sim\)ΔBHM

7 tháng 8 2017

                                 Bài làm 

Ta có hình vẽ :  A B C M Q H 6cm 3cm

a ) Tam giác AMB và AMC có đáy MC = MB và có chung chiều cao hạ từ A xuống MC nên SAMC = SAMB

Mà diện tích của tam giác AMC là : ( MQ + AC ) : 2 = 6 x AC : 2 = 3 x AC

Mà diện tích của tam giác AMB là : ( MC x AB ) : 2 = 3 x AB : 2 = 1,5 x AB

Vì SAMC = SAMB nên 3 x AC = 1,5 x AB = > 2 x AC = AB

b ) Đáy BC dài là : 21 : ( 2 + 1 ) x 2 = 14 ( cm )

Diện tích tam giác AMB là : ( 14 x 3 ) : 2 x 2 = 42 ( cm)

20 tháng 10 2023

1:

BC=BH+CH

=3,6+6,4

=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{3.6\cdot10}=6\left(cm\right)\\AC=\sqrt{6.4\cdot10}=8\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có 

\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

=>\(\widehat{C}\simeq37^0\)

ΔABC vuông tại A nên \(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{B}\simeq90^0-37^0=53^0\)

2:

ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\left(1\right)\)

ΔABM vuông tại A có AD là đường cao

nên \(BD\cdot BM=BA^2\left(2\right)\)

Từ (1),(2) suy ra \(BH\cdot BC=BD\cdot BM\)

17 tháng 12 2021

Diện tích tam giác ABM là:

4.3=12(cm2)

Diện tích tam giác ABC là:

4.6=24(cm2)