2008+2007/2+2006/3+...+2/2007+1/2008
1/2+1/3+1/4+...1/2008+1/2009
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tử
2008+2007/2+2006/3+2005/4+ ... +2/2007+1/2008
=(1+1+1+...+1)+2007/2+2006/3+2005/4+ ... +2/2007+1/2008
= 1+ (2007/2)+1+(2006/3)+1+(2005/4)+1+ ... + (2/2007)+1+(1/2008)+1
=2009/2009+2009/2+2009/3+2009/4+ ... + 2009/2007 + 2009/2008
=2009.(1/2+1/3+1/4+ ... + 1/2007+1/2008+1/2009)
P/s : Lớp 6 nhé bạn
Dấu \(.\)là dấu nhân
Đặt \(A=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}\)
Ta có :
\(A=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(\Rightarrow A=1+\left(\frac{2007}{2}+1\right)+\left(\frac{2006}{3}+1\right)+...+\left(\frac{2}{2007}+1\right)+\left(\frac{1}{2008}+1\right)\)
\(\Rightarrow A=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)
\(\Rightarrow A=\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}\)
\(\Rightarrow A=2009.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)
\(\Rightarrow A=2009.B\)
Nên : \(\frac{A}{B}=\frac{2009.B}{B}=2009\)
Vậy kết quả biểu thức đã cho là \(2009\)
~ Ủng hộ nhé
\(\frac{\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)
\(=\frac{\left(\frac{2007}{2}+1\right)+\left(\frac{2006}{3}+1\right)+...+\left(\frac{2}{2007}+1\right)+\left(\frac{1}{2008}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)
\(=\frac{\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)
\(=\frac{2009.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)
\(=2009\)
\(B=2008+\frac{2007}{2}+\frac{2006}{3}+\frac{2005}{4}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(=1+1+\frac{2007}{2}+1+\frac{2006}{3}+...+1+\frac{1}{2008}\)
\(=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2008}\)
\(=2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}+\frac{1}{2009}\right)\)
Suy ra \(A=2009\).
con cho