K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2017

ơ lạ ~ vì x;y;z đều là số dương nên x2<x5;y3<y6;z4<z7 cộng lại x2+y3+z4<x5+y6+zchứ, sao lại cho cái vế phải nhỏ hơn vế trái vậy???

15 tháng 2 2017

đề cho là số thực mà

NV
18 tháng 4 2021

Đề bài chắc chắn là có vấn đề

Thử với \(x=y=z=\dfrac{1}{3}\) thì \(VT=\dfrac{\sqrt{2}}{4}< 2\)

NV
18 tháng 4 2021

Như bạn sửa điều kiện thành \(x^3+y^3+z^3=1\) thì dấu "=" không xảy ra

Việc chứng minh vế trái lớn hơn 2 (một cách tuyệt đối) khá đơn giản:

\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\ge\dfrac{x^3}{\dfrac{x^2+1-x^2}{2}}=2x^3\)

Làm tương tự với 2 số hạng còn lại, sau đó cộng vế

Nhưng đẳng thức không xảy ra.

5 tháng 8 2016

ĐẶt  \(A=x^2+y^2+z^2\Rightarrow4A-12=4\left(x^2+y^2+z^2\right)-2\left(x+y+z+xy+yz+zx\right)\)
\(\Rightarrow3A-12=\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2+\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2-3\)
\(\Rightarrow3A\ge9\Rightarrow A\ge3\)
dấu= xảy ra khi x=y=z=1

5 tháng 8 2016

Sử dụng các bđt cơ bản

\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\ge xy+yz+zx\)

NV
20 tháng 3 2023

Do \(x^2+y^2+z^2=1\Rightarrow x^2< 1\Rightarrow x< 1\)

\(\Rightarrow x^5< x^2\)

Tương tự ta có: \(y< 1\Rightarrow y^6< y^2\)\(z< 1\Rightarrow z^7< z^2\)

\(\Rightarrow x^5+y^6+z^7< x^2+y^2+z^2\)

\(\Rightarrow x^5+y^6+z^7< 1\)

12 tháng 4 2016

Câu 1: xy + x - y = 4

<=> (xy + x) - (y+ 1) = 3

<=> x(y+1) - (y + 1) = 3

<=> (y + 1) (x - 1) = 3

Theo bài ra cần tìm các số nguyên dương x, y => Xét các trường hợp y + 1 nguyên dương và x -1 nguyên dương.

Mà 3 = 1 x 3 => Chỉ có thể xảy ra các trường hợp sau:

* TH1: y + 1 = 1; x - 1 = 3 => y = 0; x = 4 (loại vì y = 0)

* TH2: y + 1 = 3; x -1 = 1 => y = 2; x = 2 (t/m)

Vậy x = y = 2.

Câu 2:

Ta có:

 (a - b)/x = (b-c)/y = (c-a)/z =(a-b + b -c + c - a) (x + y + z) = 0

Vì x; y; z nguyên dương => a-b =0; b - c = 0; c- a =0 => a = b = c

5 tháng 3 2018

 \(\frac{a-b}{x}=\frac{b-c}{y}=\frac{c-a}{z}\)

19 tháng 10 2016

Đặt \(a=\sqrt{\frac{yz}{x}},b=\sqrt{\frac{zx}{y}},c=\sqrt{\frac{xy}{z}}\) \(\Rightarrow ab+bc+ac=1\)

Suy ra bài toán trở về dạng chứng minh \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{9}{4}\)

\(\Leftrightarrow1-\frac{a^2}{a^2+1}+1-\frac{b^2}{b^2+1}+1-\frac{c^2}{c^2+1}\le\frac{9}{4}\)

\(\Leftrightarrow\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\ge\frac{3}{4}\)(*)

Áp dụng bất đẳng thức AM-GM ta có : 

\(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3}\)

Đặt t = a+b+c \(\Rightarrow a^2+b^2+c^2=t^2-2\)

Ta cần chứng minh \(\frac{t^2}{t^2+1}\ge\frac{3}{4}\Leftrightarrow4t^2\ge3t^2+3\Rightarrow t^2\ge3\)(Luôn đúng vì \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)=3\))

Vậy ta có đpcm

4 tháng 1 2020

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:

  • Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
  • Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.